COVID-19 critical care guidance includes resource triage plan

BY ANDREW D. BOWSER
MDedge News

While triage of critical care resources should be a rare event during the COVID-19 crisis, failing to prepare for the worst-case scenario could have serious consequences, according to authors of recent reports that offer advice on how to prepare for surges in demand.

Even modest numbers of critically ill COVID-19 patients have already rapidly overwhelmed existing hospital capacity in hard-hit areas including Italy, Spain, and New York City, said authors of an expert panel report released in CHEST.

“The ethical burden this places on hospitals, health systems, and society is enormous,” said Ryan C. Maves, MD, FCCP, of the Naval Medical Center in San Diego, lead author of the expert panel report from the Task Force for Mass Critical Care and the American College of Chest Physicians (CHEST).

“Our hope is that a triage system can help us identify those patients with the greatest likelihood of benefiting from scarce critical care resources, including but not limited to mechanical ventilation, while still remembering our obligations to care for all patients as best we can under difficult circumstances,” Dr. Maves said in an interview.

Triage decisions could be especially daunting for resource-intensive therapies such as extracorporeal membrane oxygenation (ECMO), as physicians may be forced to decide when and if to offer

Concerns for clinicians over 65 grow during pandemic

BY ALICIA GALLEGOS
MDedge News

When Judith Salerno, MD, heard that New York was calling for volunteer clinicians to assist with the COVID-19 response, she didn’t hesitate to sign up.

Although Dr. Salerno, 68, has held administrative, research, and policy roles for 25 years, she has kept her medical license active and always found ways to squeeze some clinical work into her busy schedule.

“I have what I could consider ‘rusty’ clinical skills, but pretty good clinical judgment,” said Dr. Salerno, president of the New York Academy of Medicine. “I thought in this situation that I could resurrect and hone those skills, even if it was just taking care of routine patients and working on a team, there was a lot of good I can do.”

Dr. Salerno is among 80,000 health care professionals who have volunteered to work temporarily in New York during the COVID-19 pandemic as of March 31, 2020, according to New York state officials. In mid-March, New York was calling for volunteer clinicians to assist with the COVID-19 response, she didn’t hesitate to sign up.
INDICATION
Esbriet® (pirfenidone) is indicated for the treatment of idiopathic pulmonary fibrosis (IPF).

SELECT IMPORTANT SAFETY INFORMATION
Elevated liver enzymes and drug-induced liver injury (DILI): DILI has been observed with Esbriet. In the postmarketing period, non-serious and serious cases of DILI, including severe liver injury with fatal outcome, have been reported. Patients treated with Esbriet had a higher incidence of ALT and/or AST elevations of ≥3x ULN (3.7%) compared with placebo patients (0.8%). Increases in ALT and AST ≥3x ULN were reversible with dose modification or treatment discontinuation.

Conduct liver function tests (ALT, AST, and bilirubin) prior to the initiation of therapy with Esbriet, monthly for the first 6 months, every 3 months thereafter, and as clinically indicated. Measure liver function promptly in patients who report symptoms that may indicate liver injury, including fatigue, anorexia, right upper abdominal discomfort, dark urine, or jaundice. Dosage modification or interruption may be necessary for liver enzyme elevations.

Photosensitivity reaction or rash: Patients treated with Esbriet had a higher incidence of photosensitivity reactions (9%) vs placebo (1%). Patients should avoid or minimize exposure to sunlight and sunlamps, regularly use sunscreen (SPF 50 or higher), wear clothing that protects against sun exposure, and avoid concomitant medications that cause photosensitivity. Dosage reduction or discontinuation may be necessary.

Gastrointestinal (GI) disorders: Patients treated with Esbriet had a higher incidence of nausea, diarrhea, dyspepsia, vomiting, gastroesophageal reflux disease (GERD), and abdominal pain. GI events required dose reduction or interruption in 18.5% of 2403 mg/day Esbriet-treated patients, compared with 5.8% of placebo patients; 2.2% of 2403 mg/day Esbriet-treated patients discontinued treatment due to a GI event, vs 1.0% of placebo patients. The most common (>2%) GI events leading to dosage reduction or interruption were nausea, diarrhea, vomiting, and dyspepsia. Dosage modification may be necessary.

Adverse reactions: The most common adverse reactions (>10%) were nausea, rash, abdominal pain, upper respiratory tract infection, diarrhea, fatigue, headache, dyspepsia, dizziness, vomiting, anorexia, GERD, sinusitis, insomnia, weight decreased, and arthralgia.

Drug Interactions:
CYP1A2 inhibitors: Concomitant use of Esbriet and strong CYP1A2 inhibitors [e.g., fluvoxamine] is not recommended, as CYP1A2 inhibitors increase systemic exposure of Esbriet. If discontinuation of the CYP1A2 inhibitor prior to starting Esbriet is not possible, dosage reduction of Esbriet is recommended. Monitor for adverse reactions and consider discontinuation of Esbriet. Concomitant use of ciprofloxacin [a moderate CYP1A2 inhibitor] at the dosage of 750 mg BID and Esbriet are not recommended. If this dose of ciprofloxacin cannot be avoided, dosage reductions of Esbriet are recommended, and patients should be monitored. Moderate or strong inhibitors of both CYP1A2 and other CYP isoenzymes involved in the metabolism of Esbriet should be avoided during treatment.
A PATIENT-FIRST APPROACH TO IPF TREATMENT

The safety and efficacy of Esbriet were evaluated in three phase 3, randomized, double-blind, placebo-controlled, multicenter trials in patients with idiopathic pulmonary fibrosis (IPF).

Esbriet preserves more lung function by reducing lung function decline2,3

- In ASCEND (52 weeks) and CAPACITY 004 (72 weeks), Esbriet delayed disease progression by slowing lung function decline vs placebo2,3
- In CAPACITY 006, no statistically significant difference vs placebo in change in %FVC or decline in FVC volume from baseline to 72 weeks was observed2

Established safety and tolerability profile1

- Serious AEs, including elevated liver enzymes and drug-induced liver injury, photosensitivity reactions, and GI disorders, have been reported with Esbriet
- Some AEs with Esbriet occurred early and/or decreased over time (ie, photosensitivity and GI events)

Treat with the confidence that comes from experience

- Esbriet safety was evaluated in >1400 patients, of whom >170 were on treatment for more than 5 years in clinical trials1

Learn more at EsbrietHCP.com

CYP1A2 inducers: Concomitant use of Esbriet and strong CYP1A2 inducers should be avoided, as CYP1A2 inducers may decrease the exposure and efficacy of Esbriet.

Specific Populations:

Mild to moderate hepatic impairment: Esbriet should be used with caution in patients with Child Pugh Class A and B. Monitor for adverse reactions and consider dosage modification or discontinuation of Esbriet as needed.

Severe hepatic impairment: Esbriet is not recommended for patients with Child Pugh Class C. Esbriet has not been studied in this patient population.

Mild (CLcr 50–80 mL/min), moderate (CLcr 30–50 mL/min), or severe (CLcr <30 mL/min) renal impairment: Esbriet should be used with caution. Monitor for adverse reactions and consider dosage modification or discontinuation of Esbriet as needed.

End-stage renal disease requiring dialysis: Esbriet is not recommended. Esbriet has not been studied in this patient population.

Smokers: Smoking causes decreased exposure to Esbriet which may affect efficacy. Instruct patients to stop smoking prior to treatment and to avoid smoking when on Esbriet.

You may report side effects to the FDA at 1-800-FDA-1088 or www.fda.gov/medwatch or to Genentech at 1-888-835-2555.

Please see Brief Summary of Prescribing Information on adjacent pages for additional Important Safety Information.

Study design: The safety and efficacy of Esbriet were evaluated in three phase 3, randomized, double-blind, placebo-controlled, multicenter trials in which 1247 patients were randomized to receive Esbriet (n=623) or placebo (n=624).1 In ASCEND, 555 patients with IPF were randomized to receive Esbriet 2403 mg/day or placebo for 52 weeks. Eligible patients had percent predicted forced vital capacity (%FVC) between 50%–90% and percent predicted diffusing capacity of lung for carbon monoxide (%DLco) between 30%–90%. The primary endpoint was change in %FVC from baseline at 52 weeks. In CAPACITY 004, 348 patients with IPF were randomized to receive Esbriet 2403 mg/day or placebo. Eligible patients had %FVC ≥50% and %DLco ≥35%. In CAPACITY 006, 344 patients with IPF were randomized to receive Esbriet 2403 mg/day or placebo. Eligible patients had %FVC ≥50% and %DLco ≥35%. For both CAPACITY trials, the primary endpoint was change in %FVC from baseline at 72 weeks.2 Esbriet had a significant impact on lung function decline and delayed progression of IPF vs placebo in ASCEND.14 Esbriet demonstrated a significant effect on lung function for up to 72 weeks in CAPACITY 004, as measured by %FVC and mean change in FVC (mL).12 No statistically significant difference vs placebo in change in %FVC or decline in FVC volume from baseline to 72 weeks was observed in CAPACITY 006.12

COVID-19 unusual features: ‘Look for tricky symptoms’

BY M. ALEXANDER OTTO
MDedge News

The take-home message from a growing number of recent COVID-19 case reports is that the infection might be far more than a respiratory disease. Although a cause-and-effect relationship is unknown, people with the virus have presented with or developed heart disease, acute liver injury, ongoing GI issues, skin manifestations, neurologic damage, and other problems, especially among sicker people.

Table 2. Adverse Reactions Occurring in ≥10% of ESBRIET-Treated Patients and More Commonly Than Placebo in Studies 1, 2, and 3

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>1 INDICATIONS AND USAGE</th>
<th>2 CONTRAINDICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ESBRIET is indicated for the treatment of idiopathic pulmonary fibrosis (IPF)</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 WARNINGS AND PRECAUTIONS</td>
<td></td>
</tr>
<tr>
<td>5.1 Elevated Liver Enzymes and Drug-Induced Liver Injury</td>
<td>Cases of drug-induced liver injury (DILI) have been observed with ESBRIET. In the postmarketing period, non-serious and serious cases of DILI, including liver injury with fatal outcome, have been reported. Patients treated with ESBRIET 2403 mg/day in three Phase 3 trials had a higher incidence of elevations in ALT or AST ≥3x ULN than placebo patients (3.7% vs 0.8%, respectively). Elevations ≥3x ULN in ALT or AST occurred in 0.3% of patients in the ESBRIET 2403 mg/day group and in 0.2% of patients in the placebo group. Increases in ALT and AST ≥3x ULN were reversible with dose modification or treatment discontinuation. Conduct liver function tests (ALT, AST, and bilirubin) prior to the initiation of therapy with ESBRIET, monthly for the first 6 months, every 3 months thereafter, and as clinically indicated. Measure liver function tests promptly in patients who report symptoms that may indicate liver injury, including fatigue, anorexia, right upper abdominal discomfort, dark urine, jaundice. Dosage modification or interruption may be necessary for liver enzyme elevations [see Dosage and Administration section 2.3 in full Prescribing Information].</td>
<td></td>
</tr>
<tr>
<td>5.2 Photosensitivity Reaction or Rash</td>
<td>Patients treated with ESBRIET 2403 mg/day in the three Phase 3 studies had a higher incidence of photosensitivity reactions (6%) compared with patients treated with placebo (5%). The majority of the photosensitivity reactions occurred during the initial 6 months. Instruct patients to avoid or minimize exposure to sunlight (including sunlamps), to use a sunblock (SPF 50 or higher), and to wear protective clothing that protects against sun exposure. Additionally, instruct patients to avoid concomitant medications known to cause photosensitivity. Dosage reduction or discontinuation may be necessary in some cases of photosensitivity reaction or rash [see Dosage and Administration section 2.3 in full Prescribing Information].</td>
<td></td>
</tr>
<tr>
<td>5.3 Gastrointestinal Disorders</td>
<td>In the clinical studies, gastrointestinal events of nausea, diarrhea, dyspepsia, vomiting, gastro-esophageal reflux disease, and abdominal pain were more frequently reported by patients in the ESBRIET treatment groups than in those taking placebo. Dosage reduction or interruption for gastrointestinal events was required in 18.5% of patients in the 2403 mg/day group, as compared to 5.8% of patients in the placebo group. 2.2% of patients in the ESBRIET 2403 mg/day group discontinued treatment due to a gastrointestinal event, as compared to 1.0% in the placebo group. The most common (>2%) gastrointestinal events that led to dosage reduction or interruption were nausea, diarrhea, vomiting, and dyspepsia. The incidence of gastrointestinal events was highest early in the course of treatment (with highest incidence occurring during the initial 3 months) and decreased over time. Dosage modifications may be necessary in some cases of gastrointestinal adverse reactions [see Dosage and Administration section 2.3 in full Prescribing Information].</td>
<td></td>
</tr>
<tr>
<td>6 ADVERSE REACTIONS</td>
<td>The following adverse reactions are discussed in greater detail in other sections of the labeling:</td>
<td></td>
</tr>
<tr>
<td>Liver Enzyme Elevations and Drug-Induced Liver Injury [see Warnings and Precautions (5.1)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photosensitivity Reaction or Rash [see Warnings and Precautions (5.2)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal Disorders [see Warnings and Precautions (5.3)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.1 Clinical Trials Experience</td>
<td>Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice. The safety of pirfenidone has been evaluated in more than 1400 subjects with over 170 subjects exposed to pirfenidone for more than 5 years in clinical trials. ESBRIET was studied in 3 randomized, double-blind, placebo-controlled trials (Studies 1, 2, and 3) in which a total of 623 patients received 2403 mg/day of ESBRIET and 624 patients received placebo. Subjects ages ranged from 40 to 80 years (mean age of 67 years). Most patients were male (74%) and Caucasian (95%). The mean duration of exposure to ESBRIET was 62 weeks (range: 2 to 118 weeks) in these 3 trials. At the recommended dosage of 2403 mg/day, 14.6% of patients on ESBRIET compared to 9.6% on placebo permanently discontinued treatment because of an adverse event. The most common (>1%) adverse reactions leading to discontinuation were rash and nausea. The most common (>3%) adverse reactions leading to dosage reduction or interruption were rash, nausea, diarrhea, and photosensitivity reaction.</td>
<td></td>
</tr>
<tr>
<td>The most common adverse reactions with an incidence of ≥10% and more frequent in the ESBRIET than placebo treatment group are listed in Table 2.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7 DRUG INTERACTIONS

| 7.1 CYP1A2 Inhibitors | Pirfenidone is metabolized primarily (70 to 80%) via CYP1A2 with minor contributions from other CYP isozymes including CYP3A4, CYP2C9, CYP2C19, and ZD6 and ZD7. None of the CYP1A2 inhibitors. | |
| | The concomitant administration of ESBRIET and fluvoxamine or other strong CYP1A2 inhibitors (e.g., enzalutamide) is not recommended because it significantly increases exposure to ESBRIET [see Clinical Pharmacology section 12.3 in full Prescribing Information] Use of fluvoxamine or other strong CYP1A2 inhibitors should be discontinued prior to administration of ESBRIET and avoided during | |

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>% of Patients (0 to 118 Weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>36%</td>
</tr>
<tr>
<td>Rash</td>
<td>30%</td>
</tr>
<tr>
<td>Abdominal Pain</td>
<td>24%</td>
</tr>
<tr>
<td>Upper Respiratory Tract Infection</td>
<td>27%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>26%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>26%</td>
</tr>
<tr>
<td>Headache</td>
<td>22%</td>
</tr>
<tr>
<td>Dysepsia</td>
<td>19%</td>
</tr>
<tr>
<td>Dizziness</td>
<td>18%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>13%</td>
</tr>
<tr>
<td>Anorexia</td>
<td>13%</td>
</tr>
<tr>
<td>Gastro-esophageal Reflux Disease</td>
<td>11%</td>
</tr>
<tr>
<td>Sinusitis</td>
<td>11%</td>
</tr>
<tr>
<td>Insomnia</td>
<td>10%</td>
</tr>
<tr>
<td>Weight Decreased</td>
<td>10%</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>10%</td>
</tr>
</tbody>
</table>

1 Includes abdominal pain, upper abdominal pain, abdominal distension, and stomach discomfort.
In particular, Yale New Haven (Conn.) Hospital is dealing with unexpected complications up close. Almost half of the beds there are occupied by COVID-19 patients. Over 100 people are in the ICU, and almost 70 intubated. Of the more than 750 COVID admissions so far, only about 350 have been discharged. “Even in a bad flu season, you never see something like this; it’s just unheard of,” said Harlan M. Krumholz, MD, a Yale cardiologist and professor of medicine helping lead the efforts there.

Kidney injuries prominent

“When they get to the ICU, we are seeing lots of people with acute kidney injuries; lots of people developing endocrine problems; people having blood sugar control issues, coagulation issues, blood clots. We are just waking up to the wide range of ways this virus can affect people. Our ignorance is profound,” Dr. Krumholz said, but physicians “recognize that this thing has the capability of attacking almost every single organ system, and it may or may not present with respiratory symptoms.”

It’s a similar story at Mt. Sinai South Nassau, a hospital in Ocean-side, N.Y. “We’ve seen a lot of renal injury in people having complications, a lot of acute dialysis,” but it’s unclear how much is caused by the virus and how much is simply because people are so sick, said Aaron E. Glatt, MD, infectious disease professor and chair of medicine at the hospital. However, he said things are looking brighter than at Yale.

“We are not seeing the same level of increase in cases that we had previously, and we are starting to see extubations and discharges. We’ve treated a number of patients with plasma therapy, and hopefully that will be of benefit. We’ve seen some response to the immunosuppressive tocilizumab [Actemra], and a lot of response to very good respiratory therapy. I think we are starting to flatten the curve,” Dr. Glatt said.

“The growing awareness of COVID’s protean manifestations is evident in Medscape’s Consult forum, an online community where physicians and medical students share information and seek advice; there’s been over 200 COVID-19 cases and questions since January. Early on, traffic was mostly about typical pulmonary presentations, but lately’s shifted to nonrespiratory involvement. Physicians want to know if what they are seeing is related to the virus, and if other people are seeing the same things. There’s a case on Consult of a 37-year-old man with stomach pain, vomiting, and diarrhea, but no respiratory symptoms and a positive COVID test. A chest CT incidental on his abdominal scan revealed significant bilateral lung involvement.”

A 69-year-old woman with a history...
to enter cells is common in many organs, plus there were extrapulmonary manifestations with severe acute respiratory syndrome (SARS), another pandemic caused by a zoonotic coronavirus almost 20 years ago. At least with SARS, "many organs were infected when examined at autopsy," he said.

The body’s inflammatory response is almost certainly also in play. Progressive derangements in inflamma-

but we don’t have any other clue," the physician said after describing a second similar case.

Another doctor on the forum reported elevated cardiac enzymes without coronary artery obstruction in a positive patient who went into shock, with an ejection fraction of 40% and markedly increased heart wall thickness, but no lung involvement. There are also two cases of idiopathic thrombocytopenia without fever of hypoxia.

An Italian gastroenterologist said: "Look for tricky symptoms." Expand "patient history, asking about the sudden occurrence of dysgeusia and/or anosmia. These symptoms have become my guiding diagnostic light" in Verona. "Most patients become nauseated, [and] the taste of any food is unbearable. When I find these symptoms by history, the patient is COVID positive 100%.

‘Make sure that they didn’t die in vain’

There was interest in those and other reports from Consult, and comments from physicians who have theories, but no certain answers about what is, and is not, caused by the virus.

Direct viral attack is likely a part of it, said Stanley Perlman, MD, PhD, a professor of microbiology and immunology at the University of Iowa, Iowa City.

The ACE2 receptor the virus uses
such support after demand outstrips a hospital’s ability to provide it.

“ECMO requires a lot of specialized capability to initiate on a patient, and then, it requires a lot of specialized capability to maintain and do safely,” said Steven P. Keller, MD, of the division of emergency critical care medicine in the department of emergency medicine at Brigham and Women’s Hospital and Harvard Medical School, both in Boston.

Dr. Maves
Dr. Keller

Those resource requirements can present a challenge to health care systems already overtaxed by COVID-19, according to Dr. Keller, coauthor of a guidance document in Annals of the American Thoracic Society. The guidance suggests a pandemic approach to ECMO response that’s tiered depending on the intensity of the surge over usual hospital volumes.

Mild surges call for a focus on increasing ECMO capacity, while a moderate surge may require a need to focus on allocating scarce resources, and a major surge may signal the need to limit or defer use of scarce resources, according to the guidance.

“If your health care system is stretched from a resource standpoint, at what point do you say, ‘we don’t even have the capability to even safely do ECMO, and so, perhaps we should not even be offering the support?’” Dr. Keller said.

Critical care guidance
The guidance from the Task Force for Mass Critical Care and CHEST offers nine specific actions that authors suggest as part of a framework for communities to establish the infrastructure needed to triage critical care resources and “equitably” meet the needs of the largest number of COVID-19 patients. “It is the goal of the task force to minimize the need for allocation of scarce resources as much as possible,” the authors stated.

The framework starts with surge planning that includes an inventory of intensive care unit resources such as ventilators, beds, supplies, and staff that could be marshaled to meet a surge in demand, followed by establishing “identification triggers” for triage initiation by a regional authority, should clinical demand reach a crisis stage.

Next is preparing the triage system, which includes creating a committee at the regional level, identifying members of tertiary triage teams and the support structures they will need, and preparing and distributing training materials.

Agreeing on a triage protocol is important to ensure equitable targeting of resources, and how to allocate limited life-sustaining measures needs to be considered, the panel wrote. They also recommend adaptations to the standards of care such as modification of end-of-life care policies; support for health care workers, family, and the public; and consideration of pediatric issues including transport, concentration of care at specific centers, and potential increases in age thresholds to accommodate surges.

Barriers to triage?
When asked about potential barriers to rolling out a triage plan, Dr. Maves said the first is acknowledging the possible need for such a plan: “It is a difficult concept for most in critical care to accept – the idea that we may not be able to provide an individual patient with interventions that we consider routine,” he said.

Beyond acknowledgment of need, other potential barriers to successful implementation include the limited evidence base to support development of these protocols, as well as the need to address public trust.

“If a triage system is perceived as unjust or biased, or if people think that triage favors or excludes certain groups unfairly, it will undermine any system,” Dr. Maves said.

Dr. Maves and coauthors reported that some of the authors of their guidance are U.S. government employees or military service members, and that their opinions and assertions do not reflect the official views or position of those institutions. Dr. Keller reported no disclosures related to the ECMO guidance.

York Governor Andrew Cuomo (D) issued a plea for retired physicians and nurses to help the state by signing up for on-call work. Other states have made similar appeals for retired health care professionals to return to medicine in an effort to relieve overwhelmed hospital staffs and aid capacity if health care workers become ill. Such redeployments, however, are raising concerns about exposing senior physicians to a virus that causes more severe illness in individuals aged over 65 years and kills them at a higher rate.

At the same time, a significant portion of the current health care workforce is aged 55 years and older, placing them at higher risk for serious illness, hospitalization, and death from COVID-19, said Douglas O. Staiger, PhD, a researcher and economics professor at Dartmouth College, Hanover, N.H. Dr. Staiger recently coauthored a viewpoint in JAMA called “Older clinicians and the surge in novel coronavirus disease 2019,” which outlines the risks and mortality rates from the novel coronavirus among patients aged 55 years and older.

Among the 1.2 million practicing physicians in the United States, about 20% are aged 55-64 years and an estimated 9% are 65 years or older, according to the paper. Of the nation’s nearly 2 million registered nurses employed in hospitals, about 19% are aged 55-64 years, and an estimated 3% are aged 65 years or older.

“In some metro areas, this proportion is even higher,” Dr. Staiger said in an interview. “Hospitals and other health care providers should consider ways of utilizing older clinicians’ skills and experience in a way that minimizes their risk of exposure to COVID-19, such as transferring them from jobs interacting with patients to more supervisory, administrative, or telehealth roles. This is increasingly important as retired physicians and nurses are being asked to return to the workforce.”

Dr. Salerno

Protecting staff, screening volunteers

Hematologist-oncologist David H. Henry, MD, said his eight-physician group practice at Pennsylvania Hospital, Philadelphia, has already taken steps to protect him from COVID exposure. At the request of his younger colleagues, Dr. Henry, 69, said he is no longer seeing patients in the hospital where there is increased exposure risk to the virus. He and the staff also limit their time in the office to 2-3 days a week and practice telemedicine the rest of the week, Dr. Henry said in an interview.

“Whether you’re a person trying to stay at home because you’re quote ‘nonessential,’ or you’re a health care worker and you have to keep seeing patients to some extent, the less we’re face to face with others the better,” said Dr. Henry, who hosts the Blood & Cancer podcast for MDedge News. “There’s an extreme and a middle ground. If they told me just to stay home that wouldn’t help anybody. If they said, ‘business as usual,’ that would be wrong. This is a middle strategy, which is reasonable, rational, and will help dial this dangerous time down as fast as possible.”

On a recent weekend when Dr. Henry would normally have been on call in the hospital, he took phone calls for his colleagues at home while they saw patients in the hospital. This included calls with patients who had questions and consultation calls with other physicians.

“They are helping me and I am helping them,” Dr. Henry said. “Taking those calls makes it easier for my partners to see all those patients. We all want to help and be there, within reason. You want to step up an do your job, but you want to be safe.”

Peter D. Quinn, DMD, MD, chief executive physician of the Penn Medicine Medical Group, said safeguarding the health of its workforce is a top priority as Penn Medicine works to fight the COVID-19 pandemic.

“This includes ensuring that all employees adhere to Centers for Disease Control and Penn Medicine infection prevention guidance as they continue their normal clinical work,” Dr. Quinn said in an interview. “Though age alone is not a criterion to remove frontline staff from direct clinical care during the COVID-19 outbreak, certain conditions such as cardiac or lung disease may be, and clinicians who have concerns are urged to speak with their leadership about options to fill clinical or support roles remotely.”

Meanwhile, for states calling on retired health professionals to assist during the pandemic, thorough screenings that identify high-risk volunteers are essential to protect vulnerable clinicians, said Nathaniel Hibbs, DO, president of the Colorado chapter of the American College of Emergency Physicians. After Colorado issued a statewide request for retired clinicians to help, Dr. Hibbs became concerned that the state’s website included only a basic set of questions for interested volunteers.

“It didn’t have screening questions for prior health problems, comorbidities, or things like high blood pressure, heart disease, lung disease – the high-risk factors that we associate with bad outcomes if people get infected with COVID,” Dr. Hibbs said in an interview.

To address this, Dr. Hibbs and associates recently provided recommendations to the state about its screening process that aimed collecting more health information from volunteers and considering lower-risk assignments for high-risk individuals. State officials indicated they would strongly consider the recommendations, Dr. Hibbs said.

The Colorado Department of Public Health & Environment did not respond to messages seeking comment. Officials at the New York State Department of Health declined to be interviewed for this article but confirmed that they are reviewing the age and background of all volunteers, and individual hospitals will also review each volunteer to find suitable jobs.

The American Medical Association on March 30 issued guidance for retired physicians about rejoining the workforce to help with the COVID response. The guidance outlines license considerations, contributions, professional liability considerations, and questions to ask volunteer coordinators.

“Throughout the COVID-19 pandemic, many physicians over the age of 65 will provide care to patients,” AMA President Patrice A. Harris, MD, said in a statement. “Whether ‘senior’ physicians should be on the front line of patient care at this time is a complex issue that must balance several factors against the benefit these physicians can provide. As with all people in high-risk age groups, careful consideration must be given to the health and safety of retired physicians and their immediate family members, especially those with chronic medical conditions.”

Tapping talent, sharing knowledge

When Barbara L. Schuster, MD, 69, filled out paperwork to join the Georgia Medical Reserve Corps, she answered a range of questions, including inquiries about her age, specialty, licensing, and whether she had any major medical conditions.

“They sent out instructions that said, if you are over the age of 60, we really don’t want you to be doing inpatient or ambulatory with active patients,” said Dr. Schuster, a retired medical school dean in the Athens, Ga., area. “Unless they get to a point where it’s going to be you or nobody, I think that they try to protect us for both our sake and also theirs.”

Dr. Schuster

Dr. Buerhaus

As hospitals and organizations ramp up pandemic preparation, now is the time to consider roles for other parts of the country, and there have not been many volunteer opportunities for physicians thus far, she said. In the meantime, Dr. Schuster has found other ways to give her time, such as answering questions from community members on both COVID-19 and non–COVID-19 topics, and offering guidance to medical students.

“I’ve spent an increasing number of hours on Zoom, Skype, or FaceTime meeting with them to talk about various issues,” Dr. Schuster said.

As hospitals and organizations continued from page 1

Continued on following page
ABIM grants MOC extension

BY GREGORY TWACHTMAN
MDedge News

Physicians will not lose their certification if they are unable to complete maintenance of certification requirements in 2020, the American Board of Internal Medicine announced.

"Any physician who is currently certified and has a Maintenance of Certification requirement due in 2020 – including an assessment, point requirement or attestation – will now have until the end of 2021 to complete it," ABIM President Richard Baron, MD, said in a letter sent to all diplomates.

Additionally, physicians "currently in their grace year will also be afforded an additional grace year in 2021," the letter continued.

ABIM noted that many assessments were planned for the fall of 2020 and the organization will continue to offer them as planned for physicians who are able to take them. It added that more assessment dates for 2020 and 2021 will be sent out later this year.

"The next few weeks and months will challenge our health care system and country like never before," Dr. Baron stated. "Our many internal medicine colleagues – and the clinical teams that support them – have been heroic in their response, often selflessly putting their own personal safety at risk while using their superb skills to provide care for others. They have inspired all of us."

gtwachtman@mdedge.com

Continued from previous page

older clinicians and how they can best contribute, said Peter I. Buerhaus, PhD, RN, a nurse and director of the Center for Interdisciplinary Health Workforce Studies at Montana State University, Bozeman. Dr. Buerhaus was the first author of the recent JAMA viewpoint "Older clinicians and the surge in novel coronavirus 2019."

"It's important for hospitals that are anticipating a surge of critically ill patients to assess their workforce's capability, including the proportion of older clinicians," he said. "Is there something organizations can do differently to lessen older physicians' and nurses' direct patient contact and reduce their risk of infection?"

Dr. Buerhaus' JAMA piece offers a range of ideas and assignments for older clinicians during the pandemic, including consulting with younger staff, advising on resources, assisting with clinical and organizational problem solving, aiding clinicians and managers with challenging decisions, consulting with patient families, advising managers and executives, being public spokespersons, and working with public and community health organizations.

agallegos@mdedge.com

KRAS G12C occurs in 13% of patients (1 in 8) with NSCLC, comparable to the prevalence of all EGFR mutations. Identifying these patients and learning more about the KRAS G12C mutation is a high priority.

Learn more about Finding The UNSEEN 13 at FindKRASG12C.com

EGFR, epidermal growth factor receptor; KRAS, Kirsten rat sarcoma; NSCLC, non-small cell lung cancer.

© 2020 Amgen Inc. All rights reserved. USA-510-80065 3/20

FindKRASG12C.com

Oncology

© 2020 Amgen Inc. All rights reserved. USA-510-80065 3/20
Imaging recommendations issued for COVID-19

BY MITCHEL L. ZOLER
MDedge News

FROM THE JOURNAL CHEST • A consensus statement on the role of imaging during the acute work-up of COVID-19 patients called for liberal use in patients with moderate to severe clinical features indicative of infection, regardless of their COVID-19 test results, but limited use in patients who present with mild symptoms or are asymptomatic.

The consensus statement on The Role of Imaging in Patient Management During the COVID-19 Pandemic released by the Fleischner Society on April 7 (Chest. 2020 Apr 7. doi: 10.1016/j.chest.2020.04.003) was designed to highlight the “key decision points around imaging” in COVID-19 patients.

“We developed the statement to be applicable across settings” so that each clinic or hospital managing COVID-19 patients could decide the situations where chest radiography (CXR) or CT would work best, said Geoffrey D. Rubin, MD, professor of cardiovascular research, radiology, and bioengineering at Duke University in Durham, N.C., and lead author of the statement.

Written by 15 thoracic radiologists and 10 pulmonologists:

As effective treatments are developed, thoracic imaging may find new roles by establishing treatment response or characterizing patients as likely responders to novel therapies.

Clinical scenarios chosen to mirror common real-world situations: mild COVID-19 features, moderate to severe features with no critical-resource constraints, and moderate to severe features with constrained resources.

The statement also summarized its conclusions as five main recommendations and three additional recommendations.

The statement particularly called out one of its recommendations – that a COVID-19 diagnosis “may be presumed when imaging findings are strongly suggestive of COVID-19 despite negative COVID-19 testing” in a patient who has moderate to severe clinical features of COVID-19 and whose pretest probability is high. The panel voted unanimously in favor of this concept, that imaging is “indicated” in hospitalized patients with moderate to severe symptoms consistent with COVID-19 despite a negative COVID-19 test result.

“Guidance represents variance from other published recommendations which advise against the use of imaging for the initial diagnosis of COVID-19,” the statement acknowledged and specifically cited the recommendations issued in March 2020 by the American College of Radiology. Despite that, the ACR and Fleischner recommendations “are not at odds with one another,” maintained Dr. Rubin. The panel based its take on this question on the “direct experience” of its members caring for COVID-19 patients, according to the statement.

“I wholeheartedly agree with the suggested uses of imaging outlined by the panel,” commented Sachin Gupta, MD, FCCP, a pulmonologist and critical care physician in San Francisco. “The consensus statement brings a practical way to consider obtaining imaging. It leaves the door open to local standards and best judgment for using CXR or CT. Many physicians are unclear whether to image low-risk and mildly symptomatic patients. This statement gives support to a watchful waiting approach.”

Another recommendation advises against daily CXR in stable, intubated COVID-19 patients. This guide “now gives backing from an important society and thought leaders while giving an explanation” for why daily imaging is problematic, he noted in an interview.

The daily CXR in these patients adds no value, and skipping unnecessary imaging minimizes SARS-CoV-2 exposure to radiology personnel, and conserves personnel protection equipment, said the statement.

“The Fleischner Society is known worldwide for its recommendations. Having the society lend its weight on triage with imaging for COVID-19 patients is important. I suspect it will help standardize practice.”

Dr. Gupta also highlighted that lung imaging with a portable ultrasound unit has quickly become recognized as a very useful imaging tool with increasing use as the pandemic has unfolded, an option not covered by the Fleischner statement.

Study results have “confirmed excellent sensitivity, specificity, and reproducibility” with lung ultrasound, and it’s also “easy to use,” Dr. Gupta said.

Ultrasound chest imaging of COVID-19 patients did not get included in the statement despite the reliance some U.S. sites have already placed on it largely because few on the panel had direct experience using it. “We didn’t feel we could contribute” to a discussion of ultrasound, Dr. Rubin said.

The statement’s recommendations appear to have already begun influencing practice. “The feedback I’ve gotten is that people are relying on them,” said Dr. Rubin, and some programs have sent him screen shots of the recommendations embedded in their local electronic health record.

The authors concluded on a somber note: “The evidence base supporting the use of imaging across the scenarios presented is scant and the advice presented herein may undergo refinement through rigorous scientific investigation, exposing nuances of image interpretation that may lead to prognostic information and guide management decisions. At the time of this writing, no therapy has been confirmed to alter the course of COVID-19, there is no known cure, and there is no vaccine for prevention. As effective treatments are developed, thoracic imaging may find new roles by establishing treatment response or characterizing patients as likely responders to novel therapies.”

Imaging recommendations for acute, hospitalized COVID-19 patients

Main recommendations

• Imaging is not routinely indicated for COVID-19 screening in asymptomatic people.
• Imaging is not indicated for patients with mild features of COVID-19 unless they are at risk for disease progression.
• Imaging is indicated for patients with features of moderate to severe COVID-19 regardless of COVID-19 test results.
• Imaging is indicated for patients with COVID-19 and evidence of worsening respiratory status.
• When access to CT is limited, chest radiography may be preferred for COVID-19 patients unless features of respiratory worsening warrant using CT.

Additional recommendations

• Daily chest radiographs are not indicated in stable, intubated patients with COVID-19.
• CT is indicated in patients with functional impairment, hypoxemia, or both, after COVID-19 recovery.
• COVID-19 testing is warranted in patients incidentally found to have findings suggestive of COVID-19 on a CT scan.

mzoler@mdedge.com
SYMBICORT 160/4.5 for reducing COPD exacerbations

HELP PREVENT COPD EXACERBATIONS WITH SYMBICORT

Study 4: 12-month exacerbation clinical trial. SYMBICORT 160/4.5 significantly reduced the annual rate of moderate/severe COPD exacerbations vs formoterol alone.1,2

- In Study 4, COPD exacerbations were defined as worsening of COPD that required treatment with a course of oral corticosteroids and/or hospitalization

Annual rate estimate: 1.05, formoterol 4.5 mcg* (n=403)

Study 3: 6-month exacerbation clinical trial. SYMBICORT 160/4.5 significantly reduced the annual rate of moderate/severe COPD exacerbations by 26% vs formoterol (estimate rate ratio=0.74; 95% CI: 0.61, 0.91; P=.004).1,2

- Annual rate estimate was 0.94 for SYMBICORT 160/4.5 mcg* (n=606) vs 1.27 for formoterol 4.5 mcg* (n=613)

- In Study 3, COPD exacerbations were defined as worsening of ≥2 major symptoms (dyspnea, sputum volume, sputum color/purulence) or worsening of any 1 major symptom together with ≥1 of the minor symptoms (sore throat, colds [nasal discharge and/or nasal congestion], fever without other cause, increased cough or increased wheeze) for ≥2 consecutive days. COPD exacerbation severity was classified as moderate if symptoms required systemic corticosteroid (≥3 days) and/or antibiotic treatment, and severe if symptoms required hospitalization

SYMBICORT is NOT a rescue medication and does NOT replace fast-acting inhalers to treat acute symptoms.

*Administered as 2 inhalations twice daily.

Please see study design on adjacent pages.

IMPORTANT SAFETY INFORMATION

- Use of long-acting beta-adrenergic agonists (LABA) as monotherapy (without inhaled corticosteroids [ICS]) for asthma is associated with an increased risk of asthma-related death. These findings are considered a class effect of LABA. When LABA are used in fixed dose combination with ICS, data from long-term trials show a significant increase in the risk of serious asthma-related events (hospitalizations, intubations, death) compared to ICS alone.
- SYMBICORT is NOT a rescue medication and does NOT replace fast-acting inhalers to treat acute symptoms.
- SYMBICORT should not be initiated in patients during rapidly deteriorating episodes of asthma or COPD.
- Patients who are receiving SYMBICORT should not use additional inhaled LABA for any reason.
- Localized infections of the mouth and pharynx with Candida albicans has occurred in patients treated with SYMBICORT. Patients should rinse the mouth after inhalation of SYMBICORT.
- Lower respiratory tract infections, including pneumonia, have been reported following the administration of ICS.
- Due to possible immunosuppression, potential worsening of infections could occur. A more serious or even fatal course of chickenpox or measles can occur in susceptible patients.
- It is possible that systemic corticosteroid effects such as suppression of the adrenal gland may occur, particularly at higher doses. Particular care is needed for patients who are transferred from systemically active corticosteroids to ICS. Deaths due to adrenal insufficiency have occurred in asthmatic patients during and after transfer from systemic corticosteroids to less systemically available ICS.
- Caution should be exercised when considering administration of SYMBICORT in patients on long-term systemically active corticosteroids and/or a known potent CYP3A4 inhibitor.

Please see additional Important Safety Information and Brief Summary of Prescribing Information on adjacent pages.
IMPORTANT SAFETY INFORMATION (CONT’D)

- As with other inhaled medications, paradoxical bronchospasm may occur with SYMBICORT
- Immediate hypersensitivity reactions may occur, as demonstrated by cases of urticaria, angioedema, rash, and bronchospasm
- Excessive beta-adrenergic stimulation has been associated with central nervous system and cardiovascular effects. SYMBICORT should be used with caution in patients with cardiovascular disorders, especially coronary insufficiency, cardiac arrhythmias, and hypertension
- Long-term use of ICS may result in a decrease in bone mineral density (BMD). Since patients with COPD often have multiple risk factors for reduced BMD, assessment of BMD is recommended prior to initiating SYMBICORT and periodically thereafter
- Glaucma, increased intraocular pressure, and cataracts have been reported following the administration of ICS, including budesonide, a component of SYMBICORT. Close monitoring is warranted in patients with a change in vision or history of increased intraocular pressure, glaucoma, or cataracts
- In rare cases, patients on ICS may present with systemic eosinophilic conditions
- SYMBICORT should be used with caution in patients with convulsive disorders, thyrotoxicosis, diabetes mellitus, ketoacidosis, and in patients who are unusually responsive to sympathomimetic amines
- Beta-adrenergic agonist medications may produce hypokalemia and hyperglycemia in some patients
- The most common adverse reactions ≥3% reported in COPD clinical trials included nasopharyngitis, oral candidiasis, bronchitis, sinusitis, and upper respiratory tract infection
- SYMBICORT should be administered with caution to patients being treated with MAO inhibitors or tricyclic antidepressants, or within 2 weeks of discontinuation of such agents
- Beta-blockers may not only block the pulmonary effect of beta-agonists, such as formoterol, but may produce severe bronchospasm in patients with asthma
- ECG changes and/or hypokalemia associated with nonpotassium-sparing diuretics may worsen with concomitant beta-agonists. Use caution with the coadministration of SYMBICORT

INDICATIONS
SYMBICORT 160/4.5 is indicated for the maintenance treatment of airflow obstruction in patients with chronic obstructive pulmonary disease (COPD), including chronic bronchitis and/or emphysema, and to reduce COPD exacerbations.
SYMBICORT is NOT indicated for the relief of acute bronchospasm.

COPD
Exacerbation Studies

Study 3 (RISE): A 6-month, Phase IIIB, randomized, double-blind, double-dummy, parallel-group, multicenter study of 1219 patients with COPD compared SYMBICORT pMDI 160/4.5 mcg (n=606) with formoterol 4.5 mcg (n=613), each administered as 2 inhalations twice daily. Subjects were current or ex-smokers with a smoking history of ≥10 pack-years, aged ≥40 years with a clinical diagnosis of COPD, COPD symptoms for ≥1 year, and a history of ≥1 moderate or severe COPD exacerbation in the previous year requiring treatment with systemic corticosteroids or hospitalization. The study included a 4-week run-in period, a 26-week randomized treatment period, and telephone follow-up 2 weeks after end of study completion. This study was designed to assess the annual rate of moderate and severe COPD exacerbations for SYMBICORT vs formoterol.

Study 4: A 12-month, Phase IIIB, randomized, double-blind, double-dummy, parallel-group, multicenter study of 811 patients with COPD compared SYMBICORT pMDI 160/4.5 mcg (n=407) with formoterol 4.5 mcg (n=404), each administered as 2 inhalations twice daily. Subjects were current or ex-smokers with a smoking history of ≥10 pack-years, aged ≥40 years with a clinical diagnosis of COPD, COPD symptoms for ≥2 years, and a history of ≥1 COPD exacerbation in the previous year treated with a course of systemic corticosteroids and/or antibiotics. The study included a 2-week run-in period, a 12-month randomized treatment period, and telephone follow-up 2 weeks after end of study completion. This study was designed to assess the annual rate of COPD exacerbations for SYMBICORT vs formoterol.

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit www.FDA.gov/medwatch or call 1-800-FDA-1088.

Please see additional Important Safety Information and Brief Summary of Prescribing Information on adjacent pages.
SYMBICORT HAS YOUR PATIENTS* COVERED

SYMBICORT is covered for

9 out of 10

Commercial and Medicare Part D patients* nationwide

Learn more at WWW.SYMBICORTFORMULARY.COM

* "Patients" means covered lives (Commercial, Commercial BCBS, EGWP, Employer, Fed Prog, FEHBP, HIX, Medicare MA, Medicare PDP, Medicare SN, Medi-Medi, Municipal Plan, PACE, PBM, Pvt HIX, Union) at Tiers 1-7 in the nation, as calculated by Fingertip Formulary® as of 01/23/20.

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit www.FDA.gov/medwatch or call 1-800-FDA-1088.

Please see Important Safety Information and Brief Summary of Prescribing Information on adjacent pages.
In a 6-month lung function study of 1704 patients with COPD, there was a higher incidence of lung infections other than pneumonia in those patients receiving SYMBICORT 160/4.5 (5.1%) than placebo (3.2%). Pneumonia did not occur with greater incidence in the SYMBICORT 160/4.5 (4.5%) compared with placebo (5.0%).

Maintenance of Chronic Obstructive Pulmonary Disease

SYMBICORT is indicated for the long-term management of airflow obstruction in patients with chronic obstructive pulmonary disease (COPD) who require systemic corticosteroid therapy on a regular basis (e.g., 4 times a day) to control their symptoms (i.e., improve airflow limitation). SYMBICORT 160/4.5 is also indicated to reduce exacerbations of COPD. SYMBICORT 80/4.5 is the only strength indicated for the treatment of COPD.

Importantly, if a patient is switched from other systemic corticosteroids to SYMBICORT, there may be a significant reduction in the risk of a serious asthma-related event with SYMBICORT compared with the change in risk of a serious asthma-related event with the other systemic corticosteroid used. After withdrawal from systemic corticosteroids, a number of months are required for recovery of hypothalamic-pituitary-adrenal (HPA) function.

Asthma is a chronic condition of the airways that affects the ability of patients to breathe comfortably. SYMBICORT should be used on a regular basis and is not recommended for the treatment of acute asthma exacerbations. When a patient is hospitalized for an exacerbation of asthma, SYMBICORT should be discontinued, and the patient should be treated with systemic corticosteroids at the discretion of the physician. The same dose of systemic corticosteroids that can be used effectively for treating acute asthma exacerbations may not be appropriate for long-term therapy and should be individualized according to the asthma control of the patient. SYMBICORT should be taken regularly at the same time each day to help control inflammation and reduce the risk of asthma-related hospitalization, intubation, or death. SYMBICORT should not be used as a rescue inhaler.
Laboratory dosing may result in the following:

- Elevated blood pressure
- Elevated blood glucose
- Increased intraocular pressure
- Increased frequency of rashes
- Increased frequency of common adverse events in Table 2 below is based upon pooled data from three 12-week, double-blind, placebo-controlled clinical asthma trials in patients 12 years and older. In one study, patients received SYMBICORT and in another received placebo. Common adverse reactions that occurred more frequently in patients treated with SYMBICORT than in placebo-treated patients included:

<table>
<thead>
<tr>
<th>Treatment</th>
<th>SYMBICORT</th>
<th>Budesonide</th>
<th>Formoterol</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 109</td>
<td>80/4.5 mg</td>
<td>n = 54</td>
<td>n = 20</td>
<td>n = 35</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>4.8</td>
<td>3.4</td>
<td>3.8</td>
<td>2.4</td>
</tr>
<tr>
<td>Oral candidiasis</td>
<td>0.7</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Nasolaryngitis</td>
<td>1.3</td>
<td>0.9</td>
<td>0.9</td>
<td>0.6</td>
</tr>
<tr>
<td>Sinusitis</td>
<td>3.5</td>
<td>2.4</td>
<td>2.6</td>
<td>1.0</td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>1.3</td>
<td>0.9</td>
<td>1.1</td>
<td>0.6</td>
</tr>
<tr>
<td>Percentage of patients with at least one adverse reaction</td>
<td>75.5%</td>
<td>63.6%</td>
<td>63.6%</td>
<td>61.7%</td>
</tr>
<tr>
<td>Average Duration of Exposure (days)</td>
<td>77.7</td>
<td>78.8</td>
<td>77.8</td>
<td>71.4</td>
</tr>
</tbody>
</table>

The incidence of adverse reactions in Table 2 is based upon pooled data from three 12-week, double-blind, placebo-controlled clinical asthma trials in patients 12 years and older. The overall safety data in adults and adolescents are based upon 10 active- and placebo-controlled clinical asthma trials in patients 12 years and older.

The incidence of adverse events in Table 3 is based upon pooled data from two double-blind, active-controlled exacerbations studies (6 and 12 months in duration) in which 1012 adult COPD patients (616 males and 396 females) 40 years of age and older were treated with SYMBICORT 160/4.5 twice daily. All treatments were administered as 2 inhalations twice daily.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>SYMBICORT</th>
<th>Budesonide</th>
<th>Formoterol</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 209</td>
<td>80/4.5 mg</td>
<td>n = 105</td>
<td>n = 40</td>
<td>n = 54</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>7.3</td>
<td>4.8</td>
<td>4.8</td>
<td>4.0</td>
</tr>
<tr>
<td>Sinusitis</td>
<td>3.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>1.5</td>
<td>1.0</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Percentage of patients with at least one adverse reaction</td>
<td>78.9%</td>
<td>63.0%</td>
<td>63.0%</td>
<td>61.7%</td>
</tr>
<tr>
<td>Average Duration of Exposure (days)</td>
<td>77.7</td>
<td>78.8</td>
<td>77.8</td>
<td>71.4</td>
</tr>
</tbody>
</table>

The incidence of adverse reactions in Table 3 is based upon pooled data from two double-blind, active-controlled exacerbations studies (6 and 12 months in duration) in which 1012 adult COPD patients (616 males and 396 females) 40 years of age and older were treated with SYMBICORT 160/4.5 twice daily. All treatments were administered as 2 inhalations twice daily.
Remdesivir shows potential in COVID-19 drug trials

BY ANDREW D. BOWSER
MDedge News

While there are still no proven treatments for COVID-19, the antiviral medication remdesivir is currently the most promising therapy under investigation, according to authors of a recent review covering nearly 300 active clinical treatment trials underway for the disease.

Remdesivir, which has potent in vitro activity against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is not approved by the Food and Drug Administration and is currently being tested in randomized trials, according to the review authors, led by James M. Sanders, PhD, of the department of pharmacy at University of Texas Southwestern Medical Center, Dallas.

By contrast, oseltamivir has not demonstrated efficacy against the virus, corticosteroids are not recommended, and promising data from a small French hydroxychloroquine study are balanced by "several major limitations" including small sample size and exclusion of early dropouts from the analysis, among others, Dr. Sanders and colleagues wrote.

"These limitations coupled with concerns of additive cardiotoxicity with combination therapy [i.e., hydroxychloroquine with azithromycin] do not support adoption of this regimen without additional studies," the researchers wrote.

Dr. Sanders and colleagues identified 291 COVID-19–specific studies listed in ClinicalTrials.gov through April 2, including 29 placebo-controlled trials.

This list might represent just a sliver of the treatments that could combat COVID-19, according to the researchers, who said more than 3,000 small-molecule drug candidates with potential activity against human coronaviruses have been identified.

Remdesivir for COVID-19

Remdesivir, an investigational nucleotide analog, is one promising agent because of its broad-spectrum and potent activity against SARS-CoV-2 and other novel coronaviruses, they said, adding that phase 1 trials demonstrated the drug was well tolerated without observed liver or kidney toxicity.

There have been “successful” case reports of remdesivir use in COVID-19, and at least five ongoing clinical trials are evaluating the drug’s safety and antiviral activity in this disease. Among those studies is a National Institutes of Health–sponsored adaptive, randomized, placebo-controlled trial that will provide data on the use of remdesivir versus supportive care.

“As the results from randomized controlled trials are anticipated, inclusion of this agent for treatment of COVID-19 may be considered,” Dr. Sanders and colleagues wrote in their report. To date, remdesivir remains investigational and needs to be obtained via compassionate use, through expanded access, or by participating in a clinical trial, they added.

Hydroxychloroquine and chloroquine

Among the published hydroxychloroquine studies is a “promising” 36-patient open-label randomized French study, in which the antimalarial agent given every 8 hours improved virologic clearance by day 6 versus controls (70% vs. 12.5%, respectively), the review authors said. Moreover, viral clearance was 100% for 6 patients who received hydroxychloroquine plus azithromycin, compared to 57% (8 of 14) for patients treated with hydroxychloroquine alone. However, that study had several important limitations, including the small sample size, variable viral loads at baseline between groups, and a lack of safety and clinical outcomes reporting, according to the investigators. Moreover, six patients in the hydroxychloroquine group were taken out of the analysis because of early treatment stoppage due to medical intolerance or critical illness.

One prospective study including 30 patients in China demonstrated no difference in virologic outcomes for patients randomized to hydroxychloroquine plus standard of care versus standard of care alone, they added. There is also a case series of more than 100 patients with COVID-19 that reportedly improved viral clearance and reduced disease progression, though they said results haven’t been published or presented beyond a news briefing in China.

Randomized, controlled trials of chloroquine and hydroxychloroquine for COVID-19 treatment are underway, and studies are planned or enrolling to look at chloroquine prophylaxis in health care personnel and hydroxychloroquine for postexposure prophylaxis, authors said.

In results from one of those randomized trials, just reported, a higher dose of chloroquine was associated with a cardiac adverse event and an increased mortality risk, leading to the closure of that study arm. In the parallel, double-blinded, phase IIb clinical trial, patients in Brazil with SARS-CoV-2 infection received low or high doses of chloroquine plus ceftriaxone and azithromycin. According to the preprint publication, a higher rate of heart rate–corrected QT interval (QTc) prolongation and a “trend toward higher lethality” was observed in the high-dose group, leading investigators to “strongly recommend” the higher dose be abandoned.

“No apparent benefit of chloroquine was seen regarding lethality in our patients so far, but we will still enroll patients in the low chloroquine dose group to complete the originally planned sample size,” said investigators of the study, which at the time of the report had enrolled 81 out of an anticipated 440 patients.

Other therapies under study

Treatments of note in the review included the following:

- **Tocilizumab.** This monoclonal antibody interleukin-6 receptor antagonist, approved by the FDA for treatment of rheumatoid arthritis and for cytokine release syndrome related to chimeric antigen receptor (CAR) T-cell therapy, has yielded success in small series of patients with severe cases of COVID-19, according to authors. In one 21-patient report, 91% had clinical improvement, usually after a single dose. In China, tocilizumab is included in COVID-19 treatment guidelines, and several randomized clinical trials are underway in China.

- **Immunoglobulin therapy.** Antibodies from recovered COVID-19 patients could help with free virus and infected cell immune clearance, the authors said, adding that further studies are warranted beyond a few small published case series that suggest promise. Furthermore, on March 24 the FDA released guidance for screening donors for COVID-19 convalescent plasma and an emergency investigational new drug applications based on this modality.

- **Lopinavir/ritonavir.** Despite demonstrated in vitro activity against other novel coronaviruses, there are no published in vitro data for lopinavir/ritonavir in SARS-CoV-2, and likely a “limited role” for this combination is anticipated in treating COVID-19, according to the review authors. In an open-label randomized clinical trial published in the New England Journal of Medicine (2020 Mar 18. doi: 10.1056/NEJMoa2001282), there were no differences in clinical improvement, viral clearance, or mortality for antiviral treatment versus standard care. Delayed treatment initiation may explain the ineffectiveness, though a subgroup analysis didn’t show a shorter time to clinical improvement for those who got the treatment earlier.

- **Ribavirin.** Likewise, this antiviral medication has efficacy and safety data suggesting “limited value” for treatment of COVID-19. Treatment of SARS yielded “inconclusive results” for ribavirin, which was also associated with substantial toxicity that included hemolytic anemia in 60% of SARS patients.

- **Oseltamivir.** While it may treat influenza, it has no documented activity against SARS-CoV-2 in vitro. “This agent has no role in the management of COVID-19 once influenza has been excluded,” said Dr. Sanders and coauthors.

- **Corticosteroids.** They could decrease inflammatory responses in the lung, but they could also lead to delays in viral clearance and increases in secondary infection risk. Guidelines for COVID-19 say to avoid corticosteroids, and the authors of the review concur, saying that potential harms and lack of proven benefit mean they usually should not be used outside of a randomized clinical trial setting. Dr. Sanders reported no potential conflicts. Senior author James B. Cutrell, MD, of the University of Texas Southwestern Medical Center, reported nonfinancial support from Gilead and Regeneron outside of the study. No other authors reported disclosures.

chestphysiciannews.chestnet.org
LUNG CANCER

Treating lung cancer during the pandemic

BY PAM HARRISON

Lung cancer experts in Europe issued highly considered recommendations for the management of lung cancer during the COVID-19 crisis, the main intention of which is to minimize the risk of patients getting infected by SARS-CoV-2 while in hospital receiving treatment.

The recommendations were published online April 3 in ESMO Open.

“We know that having cancer increases the risk of dying of COVID-19, although not necessarily the risk of getting the virus and we also know that having lung cancer could increase the risk of pulmonary complications from SARS-CoV-2,” lead author Alfredo Addeo, MD, University Hospital of Geneva, said in an interview.

“But patients who are often in the hospital have a higher risk of catching the virus. So this paper is not about not giving necessary treatment, it’s about treating patients the best you can based on the area where you live and the resources you have and keeping patients away from the hospital as much as possible,” he added.

“The main message is, try to personalize the care you deliver,” Dr. Addeo said.

“Rather than remain rigid about how you’ve been treating patients thus far, try to think outside the box and find a way to minimize the risk of infection, and if you have to limit treatment, discuss the pros and cons of your treatment plan with the patient.”

the risk of getting the virus and we also know that having lung cancer could increase the risk of pulmonary complications from SARS-CoV-2,” lead author Alfredo Addeo, MD, University Hospital of Geneva, said in an interview.

“But patients who are often in the hospital have a higher risk of catching the virus. So this paper is not about not giving necessary treatment, it’s about treating patients the best you can based on the area where you live and the resources you have and keeping patients away from the hospital as much as possible,” he added.

“The main message is, try to personalize the care you deliver,” Dr. Addeo said.

“Rather than remain rigid about how you’ve been treating patients thus far, try to think outside the box and find a way to minimize the risk of infection, and if you have to limit treatment, discuss the pros and cons of your treatment plan with the patient and make sure the message is given clearly,” he emphasized.

Considering benefit

The first general concept to keep in mind is: How likely is a patient to benefit from treatment?

“All regimens with a survival benefit should be maintained and prioritised whenever possible,” Dr. Addeo and colleagues observe. The other co-authors of the paper are Giuseppe Banna, MD, Ospedale Cnizzaro, Catania, Italy; Alessandra Curioni-Fontecedro, MD, University Hospital Zürich; and Alex Friedlaender, MD, University Hospital of Geneva.

For non–small cell lung cancer (NSCLC), neoadjuvant chemotherapy for locally advanced resectable disease and sequential/concurrent chemotherapy/radiation therapy for patients with stage III lung cancer – provided they have adequate respiratory function – should be started when possible and should not be stopped without justification, the authors point out.

This is also true for first-line therapy.

Continued on following page
therapy in patients with metastatic disease. Treatment should also not be stopped without good reason among patients already receiving maintenance immune checkpoint inhibitor therapy.

For small-cell lung cancer (SCLC), both first-line treatment for extensive-stage disease as well as concurrent chemotherapy/radiotherapy for patients with limited-stage disease should be started when possible, again provided they have adequate respiratory function.

Palliative or stereotactic body radiotherapy (SBRT) delivered outside the lung should also be initiated when possible in SCLC patients. The authors caution, however, that, if palliative or SBRT outside the lung requires multiple visits to the hospital, treatment to the lung should be limited to cases with compression of airways or bleeding.

Oncologists should also try to start radiotherapy on day 1 of chemotherapy because then only 2 cycles will be needed; if radiotherapy is started with cycle 2 or is given sequentially, 3 cycles of treatment will be required.

“Fractions of SBRT could be reduced, depending on organ at risk (8 fractions to 5 or 3) while palliative RT [given] as a single fraction or two (8-10 Gy or 17 Gy, respectively) should be used where possible,” the authors observe.
Concurrent chemotherapy with radiotherapy for limited-stage disease should not be stopped without justification and nor should first-line treatment for metastatic SCLC, the authors continue.

Again, however, patients must have adequate respiratory function to receive or continue with concurrent chemotherapy and radiotherapy, they add.

For patients with stage III NSCLC, concurrent chemotherapy plus radiotherapy may be considered and given preferentially or not. Similarly, oral rather than intravenous chemotherapy may be preferred for elderly NSCLC patients or for those with an Eastern Cooperative Oncology Group performance status of 2 as well as for SCLC patients.

Delaying surgery
As a general principle, the use of neoadjuvant chemotherapy instead of adjuvant therapy following surgery can delay the need for immediate surgery. If surgery can be delayed, “the risk of a patient catching the virus several months from now might be less,” Dr. Addeo noted. Thus, treating patients upfront with chemotherapy is one tactic to consider in appropriate patients.

For NSCLC patients at high risk for COVID-19, adjuvant chemotherapy should be discussed and potentially withheld, the authors observe.

Continued on following page
NSCLC patients at high risk for COVID-19 include those with either cardiovascu- lar or pulmonary disease as well as patients who are 70 years of age and older. Immunotherapy should also be discussed and possibly delayed for stage III NSCLC patients following concurrent chemotherapy and radi- ation, they add. Maintenance pemetrexed also may be withheld for NSCLC patients, and intervals of immunotherapy may be prolonged (e.g., nivolumab every 4 weeks and pembrolizumab every 6 weeks). Intervals of immunotherapy should be similarly prolonged for SCLC patients, they continue. “Shorter duration of chemothera- py (e.g., four cycles of chemotherapy instead of six) should be discussed with patients and maintenance che- motherapy can be withheld,” the authors note.

Furthermore, “given the pandemic, it is highly likely that metastatic cancer patients will be less likely to be intubated or to be heavily venti- lated compared to patients without any comorbidity,” Dr. Addeo ex- plained.

“So we have to acknowledge that metastatic lung cancer patients will be at higher risk of dying due to severe pulmonary COVID-19 complica- tions,” he added. Therefore, third and further lines...
of chemotherapy in both NSCLC and SCLC patients at significant COVID-19 risk should not be initiated without having a good reason to do so.

"Prophylactic cranial irradiation (PCI) is still a matter of debate in NSCLC patients," Dr. Addoe noted. "So the reasonable alternative is to do surveillance MRI and in 6 or 8 months, we can probably offer PCI more safely at that point," he suggested, adding that radiation therapy to the brain should be considered only if a patient develops brain metastases.

The authors also suggest that thoracic consolidation radiotherapy for extensive stage SCLC should not be initiated unless there is good reason to do so.

Patients with family members or caregivers who have tested positive for COVID-19 should themselves be tested before or during any cancer treatment.

If patients themselves then test positive and are asymptomatic, "28 days of delay should be considered before (re)starting the treatment," the authors advise. However, two negative tests done 1 week apart should be carried out before starting or restarting treatment, they note.

The authors have disclosed no relevant financial relationships.

A version of this article first appeared on Medscape.com.
New guide on managing acute CVD during COVID-19

BY DEBRA L. BECK

The Chinese Society of Cardiology (CSC) has issued a consensus statement on the management of cardiovascular emergencies during the COVID-19 pandemic. The document first appeared in the Chinese Journal of Cardiology, and a translated version was published in Circulation. The consensus statement was developed by 125 medical experts in the fields of cardiovascular disease and infectious disease. This included 23 experts currently working in Wuhan, China. Three overarching principles guided their recommendations.

- The highest priority is prevention and control of transmission (including protecting staff).
- Patients should be assessed both for COVID-19 and for cardiovascular issues.

Table 2: Adverse Reactions Occurring in ≥5% of OFEV-Treated Patients and More Commonly Than Placebo in Study 4

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>OFEV, 150 mg (n=288)</th>
<th>Placebo (n=288)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diarrhea</td>
<td>11%</td>
<td>4%</td>
</tr>
<tr>
<td>Nausea</td>
<td>14%</td>
<td>4%</td>
</tr>
<tr>
<td>Vomiting</td>
<td>10%</td>
<td>4%</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>11%</td>
<td>4%</td>
</tr>
<tr>
<td>Liver enzyme elevation</td>
<td>3%</td>
<td>4%</td>
</tr>
<tr>
<td>Rash</td>
<td>4%</td>
<td>2%</td>
</tr>
<tr>
<td>Weight decreased</td>
<td>12%</td>
<td>4%</td>
</tr>
<tr>
<td>Diabetic disorders</td>
<td>3%</td>
<td>4%</td>
</tr>
<tr>
<td>Vascular disorders</td>
<td>4%</td>
<td>4%</td>
</tr>
</tbody>
</table>

*Includes abdominal pain, abdominal pain upper, abdominal pain lower, gynecological pain, and abdominal tenderness.

7.2 Anticoagulants

Nintedanib is a VEGF inhibitor and may increase the risk of bleeding. Monitor patients on full anticoagulation therapy closely for bleeding and adjust anticoagulation therapy as necessary [see Warnings and Precautions]."
COVID-19 in Hubei Province, noted writing chair and cardiologist Yaling Han, MD, of the General Hospital of Northern Theater Command in Shenyang, China.

In areas outside Hubei Province, where COVID-19 was less prevalent, this “infected until proven otherwise” approach was also recommended, although not as strictly.

Diagnosing CVD and COVID-19 simultaneously

In patients with emergent cardiovascular needs in whom COVID-19 has not been ruled out, quarantine in a single-bed room is needed, they wrote. The patient should be monitored for clinical manifestations of the disease, and undergo COVID-19 nucleic acid testing as soon as possible.

After infection control is considered, including limiting risk for infection to health care workers, risk assessment that weighs the relative advantages and disadvantages of treating the cardiovascular disease while preventing transmission can be considered, the investigators wrote.

At all times, transfers to different areas of the hospital and between hospitals should be minimized to reduce the risk for infection transmission.

The authors also recommended the use of “select laboratory tests with definitive sensitivity and specificity for disease diagnosis or assessment.”

For patients with acute aortic syndrome or acute pulmonary embolism, this means CT angiography. When acute pulmonary embolism is suspected, D-dimer testing and deep vein ultrasound can be employed, and for patients with acute coronary syndrome, ordinary electrocardiography and standard biomarkers for cardiac injury are preferred.

In addition, “all patients should undergo lung CT examination to evaluate for imaging features typical of COVID-19. ... Chest x-ray is not recommended because of a high rate of false negative diagnosis,” the authors wrote.

Intervene with caution

Medical therapy should be optimized in patients with emergent cardiovascular issues, with invasive strategies for diagnosis and therapy used “with caution,” according to the Chinese experts.

Conditions for which conservative medical treatment is recommended during COVID-19 pandemic include ST-segment elevation MI (STEMI) where thrombolytic therapy is indicated, STEMI when the optimal window for revascularization has passed, high-risk non-STEMI (NSTEMI), patients with uncomplicated Stanford type B aortic dissection, acute pulmonary embolism, acute exacerbation of heart failure, and hypertensive emergency.

“Vigilance should be paid to avoid misdiagnosing patients with pulmonary infection as COVID-19 pneumonia,” they noted.

Diagnoses warranting invasive intervention are limited to STEMI with hemodynamic instability, life-threatening NSTEMI, Stanford type A or complex type B acute aortic dissection, bradycardia complicated by syncope or unstable hemodynamics mandating implantation.
Cardiac symptoms can be first sign of COVID-19

BY M. ALEXANDER OTTO
MDedge News

In about 7% of people with confirmed novel coronavirus disease 2019 (COVID-19), and 22% of the critically ill, the virus injures the heart, probably by either attacking it directly or causing a cytokine storm that leads to myocyte apoptosis, according to a report from the Columbia University Division of Cardiology in New York.

Reports from China documented patients presenting with palpitations and chest pain without the typical fever and cough. Among those affected, acute myocardial injury is either apparent at presentation or develops after hospitalization.

The exact mechanism of injury is uncertain, but for now, "it appears that the incidence of fulminant myocarditis and profound cardiogenic shock is low; however, the rate of recovery and mode of treatment are yet to be determined," wrote authors led by Kevin Clerkin, MD, a cardiologist and assistant professor of medicine at Columbia (Circulation. 2020 Mar 21. doi: 10.1161/CIRCULATIONAHA.120.046941).

High-sensitivity cardiac troponin I (hs-cTnI) might be prognostic. In one Chinese study of hospitalized patients, median hs-cTnI levels were 2.5 pg/mL in survivors on day 4 of symptoms and did not change significantly during follow-up. Among people who died, day 4 hs-cTnI was 8.8 pg/mL and climbed to 290.6 pg/mL by day 22 (Lancet. 2020 Mar 11, doi: 10.1016/S0140-6736(20)30566-3).

"The rise in hs-cTnI tracks with other inflammatory biomarkers ... raising the possibility that this reflects cytokine storm or secondary hemophagocytic lymphohistiocytosis more than isolated myocardial injury," Dr. Clerkin and colleagues wrote.

But there are also acute heart injury reports out of China, including one man who presented with chest pain and ST-segment elevation, but no coronary obstruction, and another who presented with fulminant myocarditis in addition to severe respiratory manifestations, but with no cardiac history.

Both had depressed left ventricular ejection fractions, enlarged left ventricles, and elevated cardiac biomarkers, and both responded to intravenous immunoglobulin and steroids, among other treatments.

Amid a surge of COVID-19 cases at Columbia, "we have seen both forms of cardiac presentations: those presenting with cardiac predominant symptoms (none have had true [ST-segment elevation myocardial infarctions] yet, but most fall in the myopericarditis group), some of which have required mechanical circulatory support, and those who seem to have secondary myocardial injury with globally elevated inflammatory biomarkers (e.g., ferritin, interleukin-6, lactate dehydrogenase, hs-cTnI, and p-dimer)," Dr. Clerkin said in an interview.

"We are discussing each of these cases in a multidisciplinary fashion with our infectious disease, pulmonary, interventional cardiology, and cardiac surgery colleagues to try to make the best decision based on what we know and as our knowledge evolves," he said.

The exact cardiac effect of COVID-19 is unknown for now, but it is known already that it rides along with cardiovascular issues. There's a high prevalence of hypertension, diabetes, and diagnosed cardiovascular disease among patients, but it's unclear at this point if it's because the virus favors older people who happen to be more likely to have these problems or if it attacks people with those conditions preferentially.

It might be the latter. The virus that causes COVID-19, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), invades cells through angiotensin-converting enzyme (ACE) 2 receptors, which are highly expressed in the heart.

That raises the question of whether ACE inhibitors or angiotensin receptor blockers might help. However, "at this time, nearly all major societies have recommended against adding or stopping ... antagonists in this setting, unless done on clinical grounds independently of COVID-19, given the lack of evidence," Dr. Clerkin and his colleagues wrote.

As for heart transplants, the current thinking is to continue them without changes in immunosuppression so long as recipients test negative and haven't been around anyone who has tested positive for a month.

If a donor had COVID-19, they should have been free of the virus by polymerase chain reaction for at least 14 days. The concern is that it might be in the donor heart.

If transplant patients come down with COVID-19, the "data to date [indicate that management] is supportive care and continuation of immunosuppression for mild COVID-19 with reduction of the antimetabolite (mycophenolate or azathioprine), and further treatment based on disease severity and drug availability. Notably, one potential treatment option for COVID-19 is protease inhibitors," the authors said, but it's important to remember that they will increase the levels of cyclosporine, tacrolimus, and other calcineurin inhibitor transplant drugs.

At Columbia, "our processes have been adjusted" for heart transplants. "For instance, nonurgent testing [before and after transplant] has been tabled, we have predominantly shifted to noninvasive screening for rejection, and each potential transplant requires more scrutiny for urgency, donor screening/risk for COVID-19, and perioperative management," Dr. Clerkin said in the interview.

There was no funding, and the authors had no disclosures.

If negative-pressure ventilation is not available, air conditioning (for example, laminar flow and ventilation) should be stopped.

Establish plans now
"We operationalized all of these strategies at Beth Israel Deaconess Medical Center several weeks ago, since Boston had that early outbreak with the Biogen conference, but I suspect many institutions nationally are still formulating plans," Dhruv Kazi, MD, MSc, said in an interview. Although COVID-19 is "primarily a single-organ disease – it destroys the lungs – transmission of infection to cardiology providers was an early problem that needed to be addressed, said Dr. Kazi.

"We now know that a cardiologist seeing a patient who reports shortness of breath and then leans in to carefully auscultate the lungs and heart can get exposed if not performing proper isolation of a device, and pulmonary embolism with hemodynamic instability for whom intravenous thrombolytics are too risky. Interventions should be done in a cath lab or operating room with negative-pressure ventilation, with strict periprocedural disinfection. Personal protective equipment should also be of the strictest level.

In patients for whom COVID-19 cannot be ruled out presenting in a region with low incidence of the virus should be considered for more severe cases and undertaken only in a cath lab, electrophysiology lab, or operating room "with more than standard disinfection procedures that fulfill regulatory mandates for infection control."

A version of this article originally appeared on Medscape.com.
Join us for CHEST Annual Meeting 2020

Registration for CHEST Annual Meeting 2020 has opened! It is important now, more than ever, to stay up to date in clinical chest education. CHEST Annual Meeting is prepared to equip attendees with the latest education and original research in the field that can be taken back home and implemented into practices.

While CHEST is excited to bring the premier event in clinical chest medicine to their Second City Home of Chicago, Illinois, this October 17-21, it is understood that now may not be the best time to be planning for a conference that is 6 months down the road. Currently, your full attention is likely on your patients, your families, your health, and your safety, and it should be! Here at CHEST, the hope is to create a “light at the end of the tunnel” to give you and your colleagues something to look forward to – an opportunity to relax, learn, explore, and reconnect with your peers in the chest medicine field.

This year’s annual meeting will be filled with both new and returning educational opportunities, including CHEST Games; virtual patient tours; hands-on simulation courses; problem-based learning; and the return of FISH Bowl, an innovation competition. Along with the advanced education, there will be countless opportunities to network at after-hour events, such as the CHEST Challenge final competition, the Young Professionals Reception, and the CHEST Foundation Casino Night. Our hope is that you will be able to look ahead to October and be excited about the chance to experience everything that will be offered at CHEST 2020.

Before the meeting in October, don’t forget to submit your abstracts and case reports for consideration to be presented at CHEST 2020. CHEST is excited to give you and your colleagues the opportunity to present new and original research at this year’s meeting, which is why the deadline for submissions has been extended to June 1, 2020.

CHEST acknowledges that your workload is becoming increasingly heavier each day, and we are also making the safety of attendees the top priority. That is why CHEST will be granting full refunds to any registrant who finds that they can no longer attend CHEST 2020 as the meeting approaches. Any hotel reservation that is made through CHEST’s official housing site, onPeak, will be able to be changed or canceled up to 24 hours in advance of the reservation date. Visit chestmeeting.chestnet.org/hotel-accommodations for more information.

CHEST 2020 meeting chair, Victor Test, MD, FCCP, hopes to leave CHEST learners with a beacon of hope, saying, “Signing up to come to the meeting and participating may seem impossible to think about right now. We are working hard to provide a high-quality experience and are encouraging everyone to look forward to the future, which will be a lot brighter.”

For all of the latest information on CHEST 2020, visit chestmeeting.chestnet.org.

CHEST GLOBAL HEADQUARTERS | GLENVIEW, IL

2020 COURSES

2020 COURSES

JULY 23-25
Mechanical Ventilation: Advanced Critical Care Management

AUGUST 6-8
Cardiopulmonary Exercise Testing

SEPTEMBER 10-12
Difficult Airway Management

SEPTEMBER 17-19
Ultrasoundography: Essentials in Critical Care

SEPTEMBER 24-26
Comprehensive Bronchoscopy With EBUS

NOVEMBER 5-7
Extracorporeal Support for Respiratory and Cardiac Failure in Adults

NOVEMBER 12-14
Critical Care Ultrasound: Integration Into Clinical Practice

NOVEMBER 19-20
Comprehensive Pleural Procedures

NOVEMBER 21
NEW! Advanced Airway Management with Cadavers

DECEMBER 3-5
Ultrasoundography: Essentials in Critical Care

DECEMBER 11-12
Advanced Critical Care Echocardiography Board Review Exam Course

CHEST Education Calendar

Calendar subject to change. For most current course list and more information, visit livelearning.chestnet.org.

Register today
chestnet.org/livelearning
How CHEST is helping to flatten the curve

BY ROBERT MUSACCHIO, PHD

As you know, the COVID-19 pandemic has caused immense strain on global health systems. With our membership at the epicenter, many of you have experienced firsthand the shortages that result from a surging patient population—lack of personal protective equipment (PPE), access to ventilators, and increasing demand for more qualified health-care workers needed on the front lines to treat and care for patients. As the staff leader of your organization, I feel an immense responsibility to support our community through this crisis.

In recent weeks, CHEST petitioned the federal and local governments on several issues, advocating for tax relief for COVID responders, expansion of liability protections, and the development of a provider relief fund. We will continue to collaborate with other societies and push such efforts. However, we also recognize an obligation to make a more tangible, real-time difference in the circumstances of our membership and the lives of the patients you are working to save.

An opportunity arose when we received a call from Dr. Doreen Addrizzo-Harris, Immediate Past President of the CHEST Foundation and Professor of Medicine at NYU Langone Health. In late March, New York City was seeing an uptick in patients with confirmed COVID infection in critical condition that was escalating by the day. The situation was beginning to resemble the trajectory of hotspots in Wuhan, China and Italy, and it was already taking a toll on health-care teams. Dr. Addrizzo-Harris asked whether there was any way to leverage the strength of the CHEST community to provide help. Already, our headquarters team had received unsolicited offers to travel to areas in need from our members. The question was how could we more proactively identify such willing and able clinicians.

We quickly drew upon our existing CHEST Analytics platform to target physicians outside New York City who might be well-positioned to travel. We harnessed our communication channels to get the word out. The response was immediate, with more than 100 people completing applications to join forces with their colleagues in New York. In the first 10 days of recruitment efforts, we added an additional 250 interested volunteers to the system. The positive response from members showed both the willingness of qualified medical staff to assist on the front lines but also highlighted deficiencies in other registration systems overwhelmed with requests in the face of this pandemic. Finding certified pulmonary and critical care physicians who are willing to step in where they are needed is time- and labor-intensive and detracts from health systems’ ability to focus on care. Watching the projections in other regions, we recognized other areas may soon need this same help.

With this in mind, CHEST approached ATS and our long-time partner PA Consulting to help us address the problem on a national scale. We felt we had the resources to leverage our databases and our analytic tools to create a more efficient process that would put physicians in hospitals where they could do the most good more efficiently. We knew that if we could apply our knowledge and deploy our heroic members, we could develop a solution that could save lives and relieve frontline clinicians.

We quickly drew upon our existing CHEST Analytics platform to target physicians outside New York City who might be well-positioned to travel. We harnessed our communication channels to get the word out. The response was immediate, with more than 100 people completing applications to join forces with their colleagues in New York. In the first 10 days of recruitment efforts, we added an additional 250 interested volunteers to the system. The positive response from members showed both the willingness of qualified medical staff to assist on the front lines but also highlighted deficiencies in other registration systems overwhelmed with requests in the face of this pandemic. Finding certified pulmonary and critical care physicians who are willing to step in where they are needed is time- and labor-intensive and detracts from health systems’ ability to focus on care. Watching the projections in other regions, we recognized other areas may soon need this same help.

With this in mind, CHEST approached ATS and our long-time partner PA Consulting to help us address the problem on a national scale. We felt we had the resources to leverage our databases and our analytic tools to create a more efficient process that would put physicians in hospitals where they could do the most good more efficiently. We knew that if we could apply our knowledge and deploy our heroic members, we could develop a solution that could save lives and relieve frontline clinicians.

By leveraging the existing CHEST Analytics platform, the team created a solution that can be used by provider institutions, government agencies, and willing clinicians to quickly and effectively provide care where it is needed most. The team has engineered the solution to be scalable nationally and expandable to other critical care specialties (eg, anesthesia, emergency, nursing, respiratory therapy).

The Clinician Matching Network formally launched on April 14, 2020. It provides a two-way input that accepts sign up from individual clinicians and gathers needs and requirements from hospital systems, connecting health-care providers with the systems most in need of the specific support they are equipped to provide. We believe this has the potential to enable us to move ahead of the curve of the crisis.

I am very proud of the teams that lead this effort and have gained a greater appreciation of how CHEST, in partnership with other medical societies, can fully utilize data and analytics toward implementing public health solutions. The design and development of the Clinician Matching Network was accomplished in less than a week, leveraging a methodology that will enable the team to continuously improve and iterate through weekly releases, adding functionality quickly as the pandemic evolves.

In the weeks ahead, communications will be distributed to hospitals and hospital systems to help identify their staffing needs, encourage them to input their needs into the Clinician Matching Network, and expand the clinician-to-hospital matching effort. We aim to increase the number of collaborating associations to grow the pool of clinicians who can be deployed to areas in need.

Please visit www.chestnet.org/clinician-matching to learn more, sign up to serve, tell us about the needs of your institution, or collaborate toward this cause.

COVID-19 and impact on sleep medicine practices

BY SHANNON S. SULLIVAN, MD, AND INDIRA GURUBHAGAVATULA, MD, MPH

Introduction

Since reported in late 2019 in Wuhan China, the disease named “novel coronavirus disease 2019” (COVID-19), caused by the virus referred to as Severe Acute Respiratory Syndrome-causing Coronavirus-2 (SARS-CoV-2) has spread widely to many parts of the world. As of April 13, 2020, a total of 210 US states are reporting community spread. While levels of COVID-19 activity vary by region, the CDC has reported that the US remains in the acceleration phase of the pandemic, and that widespread transmission is expected.

On March 18, the Centers for Medicare & Medicaid Services (CMS) advised that all elective surgeries and nonessential medical, surgical, and dental procedures should be delayed to promote physical distancing, preserve personal protective equipment (PPE), and enable health-care workers (HCW) to redirect work to high-need areas. California was the first to issue a statewide shelter-in-place order on March 19, and by April, leaders in 42 states, the District of Columbia, and Puerto Rico issued similar stay-at-home orders. The White House has announced that physical distancing should continue until at least April 30. With the potential for an explosion of new cases that could overwhelm health-care resources, “business as usual” ceased to exist practically overnight.

SLEEP STRATEGIES

COVID-19 and impact on sleep medicine practices

BY SHANNON S. SULLIVAN, MD, AND INDIRA GURUBHAGAVATULA, MD, MPH

Introduction

Since reported in late 2019 in Wuhan China, the disease named “novel coronavirus disease 2019” (COVID-19), caused by the virus referred to as Severe Acute Respiratory Syndrome-causing Coronavirus-2 (SARS-CoV-2) has spread widely to many parts of the world. As of April 13, 2020, a total of 210 countries reported more than 1.9 million cases, resulting in more than 119,000 deaths. All 50 states have reported cases of COVID-19 to the Centers for Disease Control and Prevention (CDC), and most US states are reporting community spread. While levels of COVID-19 activity vary by region, the CDC has reported that the US remains in the acceleration phase of the pandemic, and that widespread transmission is expected.

On March 18, the Centers for Medicare & Medicaid Services (CMS) advised that all elective surgeries and nonessential medical, surgical, and dental procedures should be delayed to promote physical distancing, preserve personal protective equipment (PPE), and enable health-care workers (HCW) to redirect work to high-need areas. California was the first to issue a statewide shelter-in-place order on March 19, and by April, leaders in 42 states, the District of Columbia, and Puerto Rico issued similar stay-at-home orders. The White House has announced that physical distancing should continue until at least April 30. With the potential for an explosion of new cases that could overwhelm health-care resources, “business as usual” ceased to exist practically overnight.

Continued on page 28
Nucala (mepolizumab)

REAL PATIENTS. REAL LIFE.

See the data at ThisIsNUCALA.com

Real patient compensated by GSK for his time.

Trademarks owned or licensed by GSK.

©2020 GSK or licensor.
MPLJRNA200001 March 2020
Produced in USA.
The speed with which these events transpired, the demand to tailor response within days or even hours, the lack of robust data to support decision-making, the possibility of spread by asymptomatic carriers, and the potential risk for airborne, as well as droplet and fugal-oral spread, caused sleep medicine clinicians to rely on expert consensus and clinical judgment. The goal of such guidance has been to optimize care to patients with sleep disorders, while protecting the health and safety of all. Sleep medicine practices have had to balance efforts to reduce viral exposure and transmission, the need to triage health-care resources and personnel, and maintain access to care.

General clinical measures
From the outset, in areas of community spread, sleep medicine practices were called to adapt to now-standard measures, such as provider self-quarantine if ill or exposed, in-person clinic triage strategies for patients and staff prior to entrance to facilities to rapidly identify people with respiratory illness (eg, temperature monitoring), elimination of nonessential visitors, and infection control measures such as vigilant cleaning and appropriate use of personal protective equipment (PPE) during patient interactions. Typical issues facing sleep medicine practices include the need to prioritize urgent or emergency care, track canceled or postponed visits, and maintain access to communication with patients, the health-care team, payors, and employers.

Infection mitigation recommendations: sleep laboratories and ambulatory practices
Diagnostic testing
By mid-March, relatively early in the course of the outbreak in the US, the American Academy of Sleep Medicine (AASM) released recommendations for sleep clinics and laboratories regarding continuation of in-lab diagnostic, split-night, and titration studies, as well as clinical interactions and telemedicine, taking into account the CDC mitigation strategies which vary according to level of community transmission or impact of COVID-19.

This advisory was updated repeatedly over the ensuing weeks, most recently on April 8, as community-based spread increased. The AASM now strongly urges all sleep clinicians to postpone in-laboratory polysomnography (PSG) for adults and children, both diagnostic and positive airway pressure (PAP) titrations, except in emergencies. Data regarding adherence with these recommendations are lacking; anecdotal reports suggest that sleep medicine communities most heavily affected by the community spread are indeed following this practice.

The AASM guidance also advises use of home sleep apnea testing (HSAT) with consideration of single-use components or devices, use of mail-in recorders, and/or removal of reusable devices from service for 72 hours between patients.

Positive airway pressure (PAP) therapy
The potential for PAP devices to promote the aerosolization of viral particles, which could increase transmission to others on shared ventilation networks in homes and health-care settings, requires careful attention.

Generally, exhaled particle size depends on multiple characteristics, including the force and pressure at generation and environmental conditions (eg, temperature, relative humidity, and air flow). Large-size particles remain suspended in the air only briefly and settle within 1 meter from the source; these are usually mediated by breathing zones of individuals. However, smaller particles can travel farther, with distance governed by airflow that is driven by many variables, including ventilation, human movement, and temperature gradients. While droplets tend to evaporate rapidly, dry residues can remain suspended in the air. Infectious respiratory aerosols can occur as droplets >5 mcm diameter, or droplet nuclei (<5 mcm diameter). Present evidence indicates that SARS-CoV-2 transmission occurs primarily through droplet spread in settings with normal breathing. However, the World Health Organization (WHO) advises more stringent, airborne precautions for aerosol-generating procedures with COVID-19. Such procedures include intubation, extubation, noninvasive ventilation, high-flow nasal cannula, and cardiopulmonary resuscitation before intubation. Some evidence indicates that SARS-CoV-2 can linger in aerosol form for hours, and aerosol transmission is therefore plausible. Non-peer-reviewed data in real-world settings indicate the presence of SARS-CoV-2 in air samples from hallways outside and in rooms adjacent to COVID-19-containing patients. These findings raised some concerns about use of PAP in medical and home environments, leading to the recommendation that the decision to continue or withhold PAP temporarily be made based on a risk-benefit evaluation. Scant data hint that PAP therapy may be safe to use in rooms that support appropriate ventilation (eg, negative pressure rooms). Regarding mask type, recently, a group reported the possibility that oronasal masks have a better aerosol dispersal profile. However, this conclusion was based on a single study of a specific model of oronasal mask, which demonstrated an absence of ability to measure a dispersion air jet, because the exhalation ports on the mask caused diffusion rather than directed dispersion of air. The same study found, that when the jet could be measured (with nasal pillows or with leak from any interface), greater dispersion was indeed evident. While anecdotal practical methods to filter exhaled air from PAP devices to reduce aerosol transmission have been proposed, data regarding successful reduction in transmission are still lacking, and such methods are not endorsed by mask manufacturers.

Ambulatory clinics: role of telemedicine
As the spread of COVID-19 accelerated, the AASM recommended that sleep medicine practices postpone and reschedule all nonemergency, in-person appointments, and conduct as many visits as possible by telemedicine.
AASM has recommended avoidance of PAP or noninvasive ventilation for those with presumed or confirmed COVID-19 who cannot self-isolate according to CDC guidance.

Economic implications of transformed sleep medicine practices

While deploying such systematic change costs both time and money, sleep practices are also confronted with questions around lost revenue from drops in laboratory and clinic volumes. Many additional questions around reimbursement and revenue shortfalls are present, and short-term, furloughed employees may not be able to sustain income loss, which could result in difficulty in resuming services when the COVID-19 threat has been reduced.

Helpfully, during this public health emergency, CMS has expanded coverage for telemedicine services and waived requirements for face-to-face or in-person encounters,11 and some private payers have followed. Additionally, for the duration of the public health emergency, Medicare will cover PAP devices based on the clinician’s assessment of the patient without requiring PSG or a home sleep apnea test (HSAT). However, CMS has not clarified what follow-up testing, if any, may be required after this public health emergency is over. The duration of these new payment models remains uncertain.

Recommendations for PAP users

Patients and families, practitioners, and group living facilities have all expressed concerns about use of PAP during the epidemic given presumed increased risk of viral spread. In many hospital protocols, the use of PAP is restricted or disallowed for patients with suspected or confirmed COVID-19. Guidance regarding out-of-hospital use of PAP has been sparse. AASM has recommended avoidance of PAP or noninvasive ventila-
or have higher-risk medical conditions. Such patients should be evaluated to determine if they can perform safety-sensitive activities or should be discouraged from driving or operating dangerous machinery. Risk-benefit assessment should be conducted on an individual basis. Clinical judgment should be used in determining the appropriate use of NUZYRA for those with presumed or confirmed COVID-19 who can perform safety-sensitive activities. Risk-benefit assessment should be conducted on an individual basis. Clinical judgment should be used in determining the appropriate use of NUZYRA for those with presumed or confirmed COVID-19 who can perform safety-sensitive activities.

Conclusions
The COVID-19 pandemic has fuelled unprecedented, rapid changes in the way sleep medicine practices deliver care to millions of patients. These changes have been propelled by practitioners and staff who have embraced adaptability, creativity, resourcefulness, and attention to safety and effectiveness.

Tetracycline-Class Effects: NUZYRA is structurally similar to tetracycline-class antibacterial drugs and may have similar adverse reactions.

Adverse reaction including photosensitivity, pseudomembranous colitis, and anti-anabolic action (which could lead to increased BUN, creatinine, azotemia, hyperphosphatemia, pancreatitis, and abnormal liver function tests), have been reported for other tetracycline-class antibacterial drugs, and may occur with NUZYRA. Discontinue NUZYRA if any of these adverse reactions are suspected.

Development of Drug-Resistant Bacteria: Prescribing NUZYRA in the absence of a proven or strongly suspected bacterial infection is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.

ADVERSE REACTIONS: The following clinically significant adverse reactions are described in greater detail in the Warnings and Precautions section of the labeling:

- Mortality Imbalance in Patients with Community-Acquired Bacterial Pneumonia
- Inhibition of Bone Growth
- Hypersensitivity Reactions
- Tetracycline-Class Effects

Clinical Trials Experience: Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

Overview of the Safety Evaluation of NUZYRA: NUZYRA was evaluated in three Phase 3 clinical trials (Trial 1, Trial 2, and Trial 3). These trials included a single Phase 3 trial in CABP patients (Trial 1) and two Phase 3 trials in ABSSSI patients (Trial 2 and Trial 3). In all Phase 3 trials, a total of 1,073 patients were treated with NUZYRA (382 patients in Trial 1 and 691 patients in Trials 2 and 3) of which 368 patients were treated with only oral NUZYRA and 26/388 (6.7%) patients treated with moxifloxacin. Discontinuation: In Trial 1, a total of 23/382 (6.0%) patients treated with NUZYRA were discontinued due to adverse reactions, and in Trials 2 and 3, a total of 26/388 (6.7%) patients treated with NUZYRA were discontinued due to adverse reactions.

Serious Adverse Reactions and Adverse Reactions Leading to Discontinuation: In Trial 1, a total of 23/382 (6.0%) patients treated with NUZYRA and 26/388 (6.7%) patients treated with moxifloxacin experienced serious adverse reactions. Discontinuation of treatment due to any adverse reaction occurred in 21/382 (5.5%) patients treated with NUZYRA and 27/388 (7.0%) patients treated with moxifloxacin.

Most Common Adverse Reactions: Table 4 lists the most common adverse reactions occurring in ≥2% of patients receiving NUZYRA in Trial 1.

Table 4: Adverse Reactions Occurring in ≥2% of Patients Receiving NUZYRA in Trial 1

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>NUZYRA (N = 382)</th>
<th>Moxifloxacin (N = 388)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allopurinol</td>
<td>8.1%</td>
<td>8.1%</td>
</tr>
<tr>
<td>Hypersensitivity</td>
<td>7.3%</td>
<td>7.8%</td>
</tr>
<tr>
<td>Discontinuation</td>
<td>6.0%</td>
<td>6.7%</td>
</tr>
<tr>
<td>Inhibition of Bone Growth</td>
<td>6.0%</td>
<td>6.7%</td>
</tr>
<tr>
<td>Hypersensitivity Reactions</td>
<td>6.0%</td>
<td>6.7%</td>
</tr>
<tr>
<td>Tetracycline-Class Effects</td>
<td>6.0%</td>
<td>6.7%</td>
</tr>
</tbody>
</table>

In Trial 1, a total of 23/382 (6.0%) patients treated with NUZYRA were discontinued due to adverse reactions, and in Trials 2 and 3, a total of 26/388 (6.7%) patients treated with NUZYRA were discontinued due to adverse reactions.

Serious Adverse Reactions and Adverse Reactions Leading to Discontinuation: In Trial 1, a total of 23/382 (6.0%) patients treated with NUZYRA and 26/388 (6.7%) patients treated with moxifloxacin experienced serious adverse reactions. Discontinuation of treatment due to any adverse reaction occurred in 21/382 (5.5%) patients treated with NUZYRA and 27/388 (7.0%) patients treated with moxifloxacin.

Most Common Adverse Reactions: Table 4 lists the most common adverse reactions occurring in ≥2% of patients receiving NUZYRA in Trial 1.
Dr. Shannon is Medical Director, EVAL Research Institute, Palo Alto, CA; Dr. Gurbhagavatula is Associate Professor, Perelman School of Medicine, University of Pennsylvania, and with Crescenz VA Medical Center, Philadelphia, PA.

References
Meet the FISH Bowl finalists

CHEST 2019 marked the inaugural FISH Bowl competition for attendees. Inspired by Shark Tank, our kinder, gentler, yet still competitive and cutting-edge FISH Bowl (Furthing Innovation and Science for Health) featured CHEST members disrupting our beliefs about how clinical care and education are performed. As health-care providers, they presented innovative ideas pertaining to education and clinical disease for pulmonary, critical care, and sleep medicine. Six finalists were chosen from dozens of submissions, and three emerged winners. In this new Meet the FISH Bowl Finalists series, CHEST introduces you to many of them – including the People’s Choice Award winning team that includes Dr. Russ Acevedo, Wendy Fascia, and Jennifer Pedley.

Names: Russ Acevedo, MD, FCCP; Wendy Fascia MA, RRT; Jennifer Pedley, RRT
Institutional Affiliation: Crouse Health
Title: Crouse Lung PaRTners
Brief Summary of Submission: The goal of our program is to improve the quality of life for patients with COPD by establishing a primary life-long relationship with a respiratory therapist who ensures that they and their caretakers have a thorough understanding of the disease process, as well as the ability to carry out prescribed therapy, obtain resources, and reach out for help once they leave the hospital. Once enrolled in the Lung Partners Program, patients receive an in-depth initial assessment and daily assessments by a team of specially trained, primary respiratory therapists who will screen them for health literacy, physical functionality, anxiety, depression, sleep disorders, nutrition, and medication management. Clinical protocols are in place to allow for optimal treatment plans in an efficient timeframe and to assist in timely referral of patients to specialists for further assessment and follow-up.

1. What inspired your innovation? By maximizing the Respiratory Care department efficiency, this allowed for the ability of a primary respiratory care inpatient disease management program. This allows us to use our respiratory therapists to the full extent of their licensure.

2. Who do you think can benefit most from it, and why? We feel this will most benefit the patients, the respiratory therapists, and our physician partners. In the end, the major benefit is to decrease healthcare fractionation.

3. What do you see as challenges to your innovation gaining widespread acceptance? How can they be overcome? To be successful, there needs to be very strong direction from the medical director. We do a poor job in training our fellows to be strong medical directors. Increasing attention to training our fellows in the science of respiratory care will help to overcome this challenge.

4. What impact has winning Fish Bowl 2019 had on your vision for the innovation? The positive feedback and networking from our winning has confirmed the value of our program. We have received many requests for our Lung Partner Handbook.

5. How do you think your success at Fish Bowl 2019 will continue to impact your career overall in the months and years to come? We would like to grow our involvement in state and national leadership. In all that we have learned in the development and implementation of Lung PaRTners, we can help support other local and national COPD initiatives.

The CHEST Foundation is focused on a wide range of initiatives focused on three major areas:

ACCESS
Giving patients, families, and caregivers access to chest medicine clinicians and other experts for information and second opinions

EMPOWERMENT
Improving patients’ independence and connecting them with specialists

RESEARCH
Supporting clinical research grants that enhance the understanding of treatment for diseases of the chest, and exploring patient values and preferences to ensure treatments and care meet the goals of patients and families

Be a part of the CHEST Foundation’s impact: foundation.chestnet.org
President’s report

BY STEPHANIE M. LEVINE, MD, FCCP

As I write, I must admit this message is different than the one I’d envisioned sharing with you weeks ago. I anticipated updating you on meetings and collaborations with sister societies, new educational offerings, and how the Bologna World Congress and Annual Meeting plans were progressing, but activities at CHEST – and our sense of priority – have evolved along with those of our global community.

Pulmonary and critical care providers are now at the forefront of health care. Our patients, and now the greater public, are relying on our efforts and those of our teams. Amid this crisis, there is a renewed appreciation for the work all of you do; and with it, an opportunity for CHEST to lead and help ensure that the profession and our systems emerge stronger.

Back in February, we held the program committee meeting for the Annual Meeting with over 1,000 submissions. It is astounding how the program came together over just a few days thanks to the preemptive work done by Chair, Dr. Victor Test, and, Co-Chair, Dr. Christopher Carroll, and all of the curricular groups, program committee members, and staff putting in so much work prior to the face-to-face meeting. Also during February, CHEST leadership held the Forum of International Respiratory Societies’ (FIRS) strategic planning meeting. The main outcome is a plan to engage a lobbyist to represent the worldwide respiratory societies in the WHO in Geneva on universal topics such as air pollution and now, unfortunately, COVID-19. CHEST was represented at the Society of Critical Care Medicine (SCCM) Congress where we heard late-breaking information as the pandemic was beginning to unfold. We met with the Critical Care Societies Collaborative (CCSC), which is composed of representatives from CHEST, SCCM, the American Thoracic Society (ATS), and the American Association of Critical-Care Nurses (AACN). We had an opportunity to meet with the European Society of Intensive Care Medicine (ESICM) and initiate discussions toward future collaboration.

In early March, as COVID-19 began to interfere with in-person meetings, we participated virtually in the NAMDRC meeting, and formalized our commitment to formally joining forces under the umbrella of CHEST to better serve our members in the area of advocacy. To this end, a new standing CHEST committee was founded, consisting of members from the former NAMDRC Board and members from the CHEST Board of Regents and Board of Trustees and chaired by Dr. Neil Freedman and Dr. Jim Lamberti. We look forward to hosting advocacy sessions during our October meeting, and going forward, our Spring Leadership Meeting will be combined with the former NAMDRC meeting to allow our leaders to participate in advocacy efforts. We will continue to publish the Washington Watchline, bringing important news on efforts to enhance access to care and our ability to deliver it effectively. Our spring leadership meetings, board meetings, and committee meetings in early April were held virtually in light of the pandemic.

Since March, CHEST has been heavily immersed in COVID-19 preparation with new plans for alternate methods of educational delivery, new business models, and curtailment of travel on both our home fronts and on the CHEST front. Zoom and like platforms are now my best friend! Our daily vocabulary now includes an abundance of caution, surge, sheltering in place, quarantine, social distancing, flattening the curve, telemedicine, and don and doff, and we close e-mails, texts, and phone calls with Stay Safe! I established a COVID task force led by Dr. Steve Simpson (CHEST President-Elect) and with representation from the Critical Care, Chest Infections, and Disaster Response and Global Health Networks. They have been meeting weekly with the goals of disseminating and distilling COVID-related materials for the busy practitioner with links to the specific article or statement along with the BLUF (Bottom Line Up Front). I’m sure you were able to see and hear some of the reports by Dr. Mangala Narasimhan and others on the front lines in New York, on the CHEST website, 60 Minutes, and CNN. CHEST held a two-part webinar with our Chinese colleagues who shared their COVID experiences with us. These relationships were, in part, built from the PCCM Fellowship Training program we conducted with Chinese physicians, led by Dr. Darcy Marciniuk and Dr. Chen Wang under the guidance of Dr. Renli Qiao, and with the help of the late Dr. Mark Rosen, Dr. Jack Buckley, and myself. CHEST has posted a webinar on point of care ultrasound testing in the setting of COVID since many units are now using more POCUS instead of standard imaging for the critically ill. We have also posted some of our board review lectures on demand for those who want to brush up on their critical care skills and knowledge.

CHEST, unfortunately, had to reschedule the Bologna meeting due to the tragic situation in Italy and plans to reconvene the meeting June 24-26 of 2021. As of now, CHEST 2020 in Chicago is a go, but, of course, we will monitor that situation carefully. We have extended the deadline for abstracts and case reports to June 1, 2020, given the ongoing crisis. The team is busy planning for standalone and complementary online offerings to ensure seamless delivery of critical education in formats that cater easily to our newly formed habits.

CHEST staff have been working from home due to the Illinois shelter in place order but continue to work tremendously hard. They are implementing new areas to the website in an effort to improve the user experience by making information easier to find and more timely. In the publishing space, Dr. Peter Mazzone and the journal team have been receiving hundreds of COVID-related publications, which they have been reviewing and expediting for publication where appropriate. There will also be additional podcasts coming from our journal. The guidelines group has been working on shorter expert panel statements in the setting of rapidly changing evidence. And, to keep us all well, there are opportunities to share our personal feelings and experiences with treating those with COVID in video format on the website and across CHEST social media channels.

The CHEST and the CHEST Foundation have initiated a new microgrants program and have reached out to over 150 ILD and COPD support groups across the country to offer them the opportunity to apply for a max $2,500 grant. So far, seven groups have requested support. These grants go directly to patients and caregivers and provide needed relief through provision of:

1. Groceries
2. Gift cards
3. Medical supplies (including PPE for patients)
4. Technology needed to communicate with their community and HCPs
5. Household supplies, cleaning supplies

In an attempt to assist our colleagues in New York City, a call went out for volunteers at the end of March and has resulted in over 200 volunteers and more than 400 inquiries from our members. Bravo!!! We want to thank our sister societies for joining our efforts during this time to help all of our respective members and, ultimately, those patients stricken with this terrible illness. As I don and doff my COVID gear, I hope you are all safe and well in this time of unprecedented change in our lives. I look forward to my next report in a few months, hopefully on a happier note.

Stay safe!
Stephanie

Dr. Stephanie M. Levine

MDedge.com/CHESTPhysician • May 2020 • 33
POWER TO PREVENT EXACERBATIONS

CLINICAL CHARACTERISTICS TO HELP IDENTIFY SEVERE EOSINOPHILIC ASTHMA:

≥2 exacerbations annually despite maximum doses of ICS/LABA with or without systemic steroids

Responsiveness to OCS

Elevated blood eosinophils (≥150 cells/μL)*

Consider that blood eosinophils can be affected by recent corticosteroid use and can naturally vary throughout the day.

*Although not defined by clinical guidelines, one characterization of eosinophilic asthma can be a blood eosinophil count ≥150 cells/μL.

IMPORTANT SAFETY INFORMATION

CONTRAINDICATIONS
Known hypersensitivity to benralizumab or excipients.

WARNINGS AND PRECAUTIONS

Hypersensitivity Reactions
Hypersensitivity reactions (eg, anaphylaxis, angioedema, urticaria, rash) have occurred after administration of FASENRA. These reactions generally occur within hours of administration, but in some instances have a delayed onset (ie, days). Discontinue in the event of a hypersensitivity reaction.

Acute Asthma Symptoms or Deteriorating Disease
FASENRA should not be used to treat acute asthma symptoms, acute exacerbations, or acute bronchospasm.
POWER TO PREVENT
EXACERBATIONS

CLINICAL CHARACTERISTICS TO HELP IDENTIFY
SEVERE EOSINOPHILIC ASTHMA:
≥2 exacerbations annually despite maximum doses of
ICS/LABA with or without systemic steroids1-4
Responsiveness to OCS1,2
Elevated blood eosinophils (≥150 cells/μL)*5,6
Consider that blood eosinophils can be affected by recent corticosteroid
use and can naturally vary throughout the day.7,8

In SIROCCO and CALIMA, FASENRA and placebo were administered plus standard of care (SOC), which is defined as high-dose ICS/LABA (inhaled
corticosteroids/long-acting β2-agonist) with or without other controllers, including systemic steroids. In SIROCCO and CALIMA, the primary endpoint
was the rate of asthma exacerbations in patients with baseline blood eosinophil counts ≥300 cells/μL who were taking high-dose ICS and LABA.9

CONSISTENT ANNUAL ASTHMA EXACERBATION RATE DATA

LESS THAN 1
ACROSS BLOOD EOSINOPHIL COUNTS ≥150 AND ≥300 CELLS/μL9-12

SIROCCO (48 WEEKS)

≥150 cells/μL9,12
FASENRA (n=337)
Placebo + SOC (n=324)
AER§ with FASENRA was 0.65 vs 0.98 with placebo + SOC in CALIMA (56 weeks)‡12
FASENRA (n=309), Placebo (n=324)
The analyses of these endpoints were not multiplicity protected. Results are descriptive only.

≥300 cells/μL9,11
FASENRA (n=239); Placebo (n=248)
AER§ with FASENRA was 0.73 vs 1.01 with placebo + SOC in CALIMA (56 weeks, P=0.019)9,11
FASENRA (n=239), Placebo (n=248)

AER§ with FASENRA was 1.29 vs 1.52 with placebo + SOC in SIROCCO (56 weeks)‡9-11
FASENRA (n=309), Placebo (n=324)

AER§ was 0.74 vs 1.29 with placebo + SOC in SIROCCO (56 weeks, P<0.000110
FASENRA (n=267), Placebo + SOC (n=267)

The most common adverse reactions (incidence greater than or equal to 3%) associated with the use of FASENRA (and placebo) included
headache 8% (6%); pharyngitis 5% (3%); pyrexia 3% (2%); and hypersensitivity reactions 3% (3%).§

A Annual exacerbation rate (AER) was defined as the total number of exacerbations multiplied by 365.25, divided by the total duration of follow-up (days) within the treatment group.

IMPORTANT SAFETY INFORMATION (cont’d)

WARNINGS AND PRECAUTIONS (cont’d)

Reduction of Corticosteroid Dosage
Do not discontinue systemic or inhaled corticosteroids abruptly upon initiation
of therapy with FASENRA. Reductions in corticosteroid dose, if appropriate,
Please see additional Important Safety Information on next page and Brief Summary of Prescribing Information on adjacent pages.

MAKE FASENRA YOUR FIRST CHOICE RESPIRATORY BIOLOGIC

FASENRA is not indicated for treatment of other eosinophilic conditions or for the relief of acute bronchospasm or status asthmaticus.

FASENRA® (benralizumab) Subcutaneous Injection 30 mg
FROM THE START
FASENRA is indicated as an add-on maintenance treatment of patients 12 years and older with severe eosinophilic asthma.

STUDY DESIGNS
SIROCCO and CALIMA (Trials 1 and 2)

SIROCCO (48-week) and CALIMA (56-week) were 2 randomized, double-blind, parallel-group, placebo-controlled, multicenter studies comparing FASENRA 30 mg SC Q4W for the first 3 doses, then Q8W thereafter; benralizumab 30 mg SC Q4W, and placebo SC. A total of 1204 (SIROCCO) and 1306 (CALIMA) patients aged 12-75 years old with severe asthma uncontrolled on high-doseICS (SIROCCO) and medium- to high-dose ICS (CALIMA) plus LABA with or without additional controllers were included. Patients had a history of ≥2 exacerbations requiring systemic corticosteroids or temporary increase in usual dosing in the previous year. Patients were stratified by geography, age, and blood eosinophil counts (≥300 cells/μL and <300 cells/μL). The primary endpoint was annual exacerbation rate ratio vs placebo in patients with blood eosinophil counts of ≥300 cells/μL on high-dose ICS and LABA. Exacerbations were defined as a worsening of asthma that led to use of systemic corticosteroids for ≥3 days, temporary increase in a stable OCS background dose for ≥3 days, emergency/urgent care visit because of asthma that needed systemic corticosteroids, or inpatient hospital stay of ≥24 hours because of asthma. Key secondary endpoints were pre-bronchodilator FEV1, and total asthma symptom score at Week 48 (SIROCCO) and Week 56 (CALIMA) in the same population.1211

IMPORTANT SAFETY INFORMATION (cont’d)
WARNINGS AND PRECAUTIONS (cont’d)
Reduction of Corticosteroid Dosage (cont’d)
should be gradual and performed under the direct supervision of a physician. Reduction in corticosteroid dose may be associated with systemic withdrawal symptoms and/or unmask conditions previously suppressed by systemic corticosteroid therapy.

Parasitic (Helminth) Infection
It is unknown if FASENRA will influence a patient’s response against helminth infections. Treat patients with pre-existing helminth infections before initiating therapy with FASENRA. If patients become infected while receiving FASENRA and do not respond to anti-helminth treatment, discontinue FASENRA until infection resolves.

ADVERSE REACTIONS
The most common adverse reactions (incidence ≥ 5%) include headache and pharyngitis.
Injection site reactions (eg, pain, erythema, pruritus, papule) occurred at a rate of 2.2% in patients treated with FASENRA compared with 1.9% in patients treated with placebo.

Please see Brief Summary of Prescribing Information on adjacent pages.

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit www.FDA.gov/medwatch or call 1-800-FDA-1088.

AstraZeneca

FASENRA is a registered trademark of the AstraZeneca group of companies. ©2020 AstraZeneca. All rights reserved US-37231 2/20

USE IN SPECIFIC POPULATIONS
A pregnancy exposure registry monitors pregnancy outcomes in women exposed to FASENRA during pregnancy. To enroll call 1-877-311-8972 or visit www.motherstobaby.org/fasenra.
The data on pregnancy exposure from the clinical trials are insufficient to inform on drug-associated risk. Monoclonal antibodies such as benralizumab are transported across the placenta during the third trimester of pregnancy; therefore, potential effects on a fetus are likely to be greater during the third trimester of pregnancy.

INDICATION
FASENRA is indicated for the add-on maintenance treatment of patients with severe asthma aged 12 years and older, and with an eosinophilic phenotype.

• FASENRA is not indicated for treatment of other eosinophilic conditions
• FASENRA is not indicated for the relief of acute bronchospasm or status asthmaticus
Warnings and Precautions

Hypersensitivity Reactions

Hypersensitivity reactions (e.g., angioedema, anaphylaxis, urticaria, rash) have occurred following administration of FASENRA. These reactions generally occur within hours of administration, but in some instances have a delayed onset (i.e., days). In the event of a hypersensitivity reaction, FASENRA should be discontinued [see Contraindications (4) in the full Prescribing Information].

Acute Asthma Symptoms or Deteriorating Disease

Do not use FASENRA to treat acute asthma symptoms or acute exacerbations. Do not use FASENRA to treat acute bronchospasm or status asthmaticus. Patients should seek medical advice if their asthma remains uncontrolled or worsens after initiation of treatment with FASENRA.

Reduction of Corticosteroid Dosage

Do not discontinue systemic or inhaled corticosteroids abruptly upon initiation of therapy with FASENRA. Reductions in corticosteroid dose, if appropriate, should be gradual and performed under the direct supervision of a physician. Reduction in corticosteroid dosage may be made in accordance with the patient's underlying asthma symptoms and/or uncontrolled condition previously suppressed by systemic corticosteroid therapy.

Parasitic (Helminth) Infections

Eosinophils may be involved in the immunological response to some helminth infections. Patients with known helminth infections were excluded from participation in clinical trials. It is unknown if eosinophils are a participant's response against parasitic infections [see Warnings and Precautions (5.1)]. Treat patients with pre-existing parasitic infections according to the standard therapeutic regimen with FASENRA. If patients become infected while receiving treatment with FASENRA and do not respond to treatment promptly, discontinue treatment with FASENRA until infection resolves.

Adverse Reactions

The following adverse reactions are described in greater detail in other sections:

- Hypersensitivity Reactions [see Warnings and Precautions (5.1) in the full Prescribing Information].

Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

FASENRA is intended for use under the guidance of a healthcare provider. In line with clinical practice, monitoring of patients after administration of biologic agents is recommended [see Warnings and Precautions (5.1) in the full Prescribing Information].

Administer FASENRA into the thigh or abdomen. The upper arm can also be used if a healthcare provider or caregiver administers the injection. Prior to administration, warm FASENRA by leaving at room temperature for about 20 minutes. Visually inspect FASENRA for particulate matter and discoloration prior to administration. FASENRA is clear to opalescent, colorless to slightly yellow, and may contain a few translucent or white particles.

Do not use FASENRA if the liquid is cloudy, discolored, or if it contains large particles or foreign particulate matter.

Prohibited Surfaces

The prefilled syringe is for administration by a healthcare provider.

Admixture (FASENRA PEN™)

Avoid mixing FASENRA with other drugs or diluents. Do not use FASENRA to prepare admixtures for intravenous administration. Patients/caregivers may inject after proper subcutaneous injection technique in use and administer FASENRA if it is determined appropriate. Instructions for Administration of FASENRA Prefilled Syringe (Healthcare Providers)

Refer to Figure to identify the proper sequence for administration in the usage steps.

Figure 1

Table 1

Table 2

OVERDOSAGE

Doses of 2200 mg were administered subcutaneously in clinical trials to patients with eosinophilic disease without evidence of dose-related toxicities. There is no information on the effects of benralizumab in patients who have overdosed.

Patient Counseling

Advise the patients and/or caregivers to read the FSA-approved patient labeling (Patient Information) before use of FASENRA. Inform patients to not discontinue systemic or inhaled corticosteroids except under the close supervision of their healthcare provider. Inform patients to report their experience with FASENRA to the Adverse Event Reporting System by calling 1-877-311-8972 or by visiting mothertobaby.org/Fasenra. Inform patients to not discontinue benralizumab therapy if they experience symptoms of an allergic reaction [see Warnings and Precautions (5.1) in the full Prescribing Information].

Reduction of Corticosteroid Dosage

Inform patients that FASENRA does not treat adult asthma symptoms or acute exacerbations. Inform patients to seek medical advice if their asthma remains uncontrolled or worsens after initiating treatment with FASENRA [see Warnings and Precautions (5.2) in the full Prescribing Information].

Precautions

Inform patients there is a pregnancy registry exposure that monitors pregnancy outcomes in women exposed to FASENRA during pregnancy and that they can enroll in the Pregnancy Exposure Registry by calling 1-877-511-8792 or visiting mothertobaby.org/Fasenra. Risk Summary

The pregnancy exposure from the clinical trials is insufficient to inform on drug-associated risks. Monoclonal antibodies such as benralizumab are transported across the placenta during the third trimester of pregnancy, therefore, potential effects on a fetus are likely to be greater during the third trimester of pregnancy. In a prenatal and postnatal development study conducted in cynomolgus monkeys, there was no evidence of fetal harm with the exposure to up to 10 times the human dose of benralizumab at gestations that produced exposures up to approximately 310 times the exposure at the maximum recommended human dose (MRHD) of 30 mg SC [see Data].

In the in vitro study the in vitro background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2.4% to 15% and 20%, respectively.

Clinical Considerations

Hematologic and/or Embryo/Fetal Risk

In women with poorly or moderately controlled asthma, evidence demonstrates that there is an increased risk of preclampsia in the mother and preterm birth, low birth weight, and small for gestational age newborns. The live birth rate and neonatal control should be closely monitored in pregnant women and treatment adjusted as necessary to maintain optimal control.

Risk Summary

The safety and efficacy in patients younger than 12 years of age has not been established.

Protective Use

Inform patients that FASENRA does not treat adult asthma symptoms or acute exacerbations. Inform patients to seek medical advice if their asthma remains uncontrolled or worsens after initiating treatment with FASENRA [see Warnings and Precautions (5.2) in the full Prescribing Information].

Hypersensitivity Reactions

Inform patients that hypersensitivity reactions (e.g., angioedema, anaphylaxis, urticaria, rash) have occurred after administration of FASENRA. These reactions generally occurred within hours of administration, but in some instances had a delayed onset (i.e., days). Inform patients to contact their healthcare provider if they experience symptoms of an allergic reaction [see Warnings and Precautions (5.1) in the full Prescribing Information].

Precautions

Inform patients there is a pregnancy registry exposure that monitors pregnancy outcomes in women exposed to FASENRA during pregnancy and that they can enroll in the Pregnancy Exposure Registry by calling 1-877-511-8792 or visiting mothertobaby.org/Fasenra. Risk Summary

The pregnancy exposure from the clinical trials is insufficient to inform on drug-associated risks. Monoclonal antibodies such as benralizumab are transported across the placenta during the third trimester of pregnancy, therefore, potential effects on a fetus are likely to be greater during the third trimester of pregnancy. In a prenatal and postnatal development study conducted in cynomolgus monkeys, there was no evidence of fetal harm with the exposure to up to 10 times the human dose of benralizumab at gestations that produced exposures up to approximately 310 times the exposure at the maximum recommended human dose (MRHD) of 30 mg SC [see Data].

In the in vitro study the in vitro background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2.4% to 15% and 20%, respectively.

Clinical Considerations

Hematologic and/or Embryo/Fetal Risk

In women with poorly or moderately controlled asthma, evidence demonstrates that there is an increased risk of preclampsia in the mother and preterm birth, low birth weight, and small for gestational age newborns. The live birth rate and neonatal control should be closely monitored in pregnant women and treatment adjusted as necessary to maintain optimal control.
have an ever-expanding option to use of silicone, bare metallic, and hybrid stents, pulmonologists have evolved over the last half century. 3D printing-assisted injection molding with direct 3D printing. Airway stents have made personalized airway stents a reality, both by 3D printing and pulmonology. Advancements in 3D printing have made personalized airway stents a reality, both by 3D printing and pulmonology. Ad- vancements in 3D printing have made personalized airway stents a reality, both by 3D printing and pulmonology. Ad- vancements in 3D printing have made personalized airway stents a reality, both by 3D printing and pulmonology.

As we look into the future, the field of pulmonology will experience significant changes with more adoption of 3D printing (ie, additive manufacturing). We may soon be able to create personalized airway prosthesis of any type (stenst, spig- ots, valves, tracheostomies, t-tubes) for the benefit of our patients. Dr. George Cheng, MD, PhD, FCCP Steering Committee Member

Dr. Cheng

Interventional and Chest Diagnostic Procedures 3D printing and pulmonology Recent advances in 3D printing have enabled physicians to apply this technology in medical education, procedural planning, tissue modeling, and implantable device manufac- turing. This is especially true in the field of pulmonology. Airway stents have significantly evolved over the last half century. With use of silicone, bare metallic, and hybrid stents, pulmonologists have an ever-expanding option to address airway stenosis due to both benign and malignancy etiologies. Personalized airway stents hold the potential for advanced customization, minimizing pressure points, and improving airflow dynamics to increase mucus clearance. In January 2020, the US Food and Drug Administration (FDA) cleared patient-specific airway stents de- veloped by Dr. Thomas Gildea of Cleveland Clinic. The patient-spe- cific silicone stents are created using CT scans and 3D visualization software to generate a 3D-printed mold that was subsequently used to inject with medical-grade silicone. Two years earlier, a Duke University startup known as restor3D created the first direct 3D printed airway stent using a compressible bio-com- patible material with properties sim- ilar to that of silicone. Both of these stents have been used in patients with promising response.

As we look into the future, the field of pulmonology will experience significant changes with more adoption of 3D printing (ie, additive manufacturing). We may soon be able to create personalized airway prosthesis of any type (stenst, spig- ots, valves, tracheostomies, t-tubes) for the benefit of our patients. Dr. George Cheng, MD, PhD, FCCP Steering Committee Member

Dr. Cheng

Interventional and Chest Diagnostic Procedures 3D printing and pulmonology Recent advances in 3D printing have enabled physicians to apply this technology in medical education, procedural planning, tissue modeling, and implantable device manufac- turing. This is especially true in the field of pulmonology. Airway stents have significantly evolved over the last half century. With use of silicone, bare metallic, and hybrid stents, pulmonologists have an ever-expanding option to address airway stenosis due to both benign and malignancy etiologies. Personalized airway stents hold the potential for advanced customization, minimizing pressure points, and improving airflow dynamics to increase mucus clearance. In January 2020, the US Food and Drug Administration (FDA) cleared patient-specific airway stents de- veloped by Dr. Thomas Gildea of Cleveland Clinic. The patient-spe- cific silicone stents are created using CT scans and 3D visualization software to generate a 3D-printed mold that was subsequently used to inject with medical-grade silicone. Two years earlier, a Duke University startup known as restor3D created the first direct 3D printed airway stent using a compressible bio-com- patible material with properties sim- ilar to that of silicone. Both of these stents have been used in patients with promising response.

It has since rapidly spread globally to countries across six continents. As of early April, 1,286,409 cases have been reported worldwide with 337,933 cases (9,600 deaths) in the US (https://coronavirus. jhu.edu/map. html) with more cases and deaths every day. Most of these initial reports of COVID-19 (COronaVirus Disease) in children are from China. Fever (60%) and cough (65%) were the most common symptoms. Procalcitonin elevation (80%) and co-infection (80%) were prominent clinical findings. Consolidation with surrounding halo sign (50%) and ground-glass opacities (60%) on CT scan were typical radiologic findings. Almost all children recovered with-
Pulmonary Vascular Disease

Pulmonary hypertension associated with atrial septal defect in adults: Closing time? Up to 10% of adults with atrial septal defects (ASDs) can develop pulmonary arterial hypertension (PAH) according to European Guidelines on pulmonary hypertension (PH) (Galie, et al. Eur Heart J. 2016;37[1]:67). If ASD closure is considered, they propose a pulmonary vascular resistance index (PVRi) <4 Wood units (WU) m² as a safe cutoff. Higher PVRi carries a higher operative risk, warranting evaluation in specialized PH centers. American guidelines (Stout, et al. Circulation. 2019 Apr 2;139[14]:e698) recommend closure in symptomatic patients with a net shunt (Qp/Qs) of >1.5:1. Closure appears safe if pulmonary artery (PA) systolic pressure is <1/2 systemic blood pressure, and PVR / systemic vascular resistance is <0.3. They recommend specialized evaluation for higher pressures and to avoid closure once a net right to left shunt is present (Qp/Qs <1.0). However, in severe cases, experienced centers have reported some success with a “treat-and-close” approach if post-therapy PVR reaches <6.5 WU (Bradley, et al. Int J Cardiol. 2019;291:127).

Finally, consider the following when evaluating ASD-associated PAH: 1. A thermodynamically driven output method should not be used to calculate PVR/ PVRi because of confounding re-circulation from the intracardiac shunt (Kwan, et al. Clin Cardiol. 2019;42[3]:334). Qp is used instead and is calculated using Fick equation, requiring accurate oxygen saturation measurements. 2. Mixed venous saturation (MVO2) is needed to determine Qp, and PA saturation cannot be used as MVO2 surrogate. MVO2 must be calculated using superior and inferior vena cava saturations. 3. Some patients with idiopathic PAH may have a small coexisting ASD that is not responsible for the abnormal hemodynamics. Closing the ASD in those cases would be contraindicated. 4. Patients may have more than one type of coexisting congenital heart defect. Francisco J. Soto, MD, MS, FCCP

Steering Committee Member

Sharing your philanthropic dollars

Amid the COVID-19 pandemic, we are filled with gratitude because of the support you have provided the CHEST Foundation. Along with our sincere thanks, we wanted to share how your philanthropic dollars are being put to use fulfilling the urgent needs of our community during this crisis. Specifically, the CHEST Foundation: 1. Continuing to provide reliable educational materials and resources that support our clinicians, their patients, and caregivers; 2. Actively working with manufacturers and vendors from around the globe to secure life-saving equipment for US hospitals; and 3. Partnering with other leading health-care organizations to increase our impact in vulnerable and at-risk communities. These are just some of the ways the CHEST Foundation and CHEST are rallying to support the fight against COVID-19. To see more of what we are doing, and to keep an eye out for future resources, please visit us here: https://bit.ly/3bKAGlZ. We will continue to identify new ways in which we can support the efforts of our health-care providers and serve as a leading resource for patients, caregivers, and those we consider “at-risk, noninfected” populations.

Additionally, the CHEST Foundation’s redesigned website will be launching May 1! Be sure to visit us at chestfoundation.org to view and share our clinician-authored patient education guides with anyone who needs them.

Thank you for providing your generous support, which has allowed us to develop these much-needed resources. We would not be able to do it without you.
One blood draw helps stratify patients with lung nodules by urgency of diagnostic intervention.

Find out more at nodify.com