Results from our respiratory solutions provide clarity, enabling clinicians to know earlier, intervene sooner, and improve patient outcomes.

BIOFIRE® RESPIRATORY 2.1 PANEL
1 Test. 22 Targets. ~45 Minutes.
Sample Type: Nasopharyngeal swab
Identifies 22 of the most common respiratory viruses and bacteria.

BIOFIRE® FILMARRAY® PNEUMONIA PANEL
1 Test. 33 Targets. ~1 Hour.
Sample Type: BAL-like (including mini-BAL)
Sputum-like (including ETA)
Identifies 26 of the most common respiratory viruses and bacteria, and 7 antimicrobial resistance genes.

VIDAS® B·R·A·H·M·S PCT™
1 Test. ~20 Minutes.
Sample Type: Serum or plasma
Measures procalcitonin (PCT), a specific marker of severe bacterial infection in patients with lower respiratory tract infections.

Product availability varies by country. Consult your bioMérieux representative.
PULMONOLOGY DATA TRENDS 2023

TABLE OF CONTENTS

4 Contributing Authors

6 Long-Awaited RSV Vaccines Now Available for Older Adults and Pediatric Patients
Burton L. Lesnick, MD, FCCP

8 Decreasing Pulmonary Embolism-Related Mortality
Parth Rai, MD

12 Addressing Physician Burnout in Pulmonology and Critical Care
Kelly Vranas, MD, MCR

14 Updated Guidelines for COPD Management: 2023 GOLD Strategy Report
Muhammad Adrish, MD, MBA, FCCP, FCCM

16 Progressive Pulmonary Fibrosis: Understanding Its Many Forms
Tejaswini Kulkarni, MD, MPH, FCCP

18 Sleep Apnea: Comorbidities, Racial Disparities, Weight Guidelines, and Alternatives to CPAP
Lauren Tobias, MD, FCCP

21 Lung Cancer Screening: A Need for Adjunctive Testing
Eric S. Edell, MD, FCCP

23 Asthma Across a Woman’s Lifespan
Navitha Ramesh, MD, FCCP

26 Tuberculosis Management: Returning to Pre-Pandemic Priorities
Patricio Escalante, MD, MSc, FCCP, and Paige K. Marty, MD

28 Long COVID: Advocating for Patients and Implementing Effective Techniques
Kyle B. Enfield, MD, MS, FSHEA, FCCM

30 References
Contributing Authors

The staff at CHEST and the editors of Pulmonology Data Trends 2023 and CHEST Physician would like to thank the following experts for their contributions to this issue.

Muhammad Adrish, MD, MBA, FCCP, FCCM
Associate Professor
Section of Pulmonary and Critical Care Medicine
Department of Medicine
Baylor College of Medicine
Ben Taub Hospital
Houston, TX

Paige K. Marty, MD
Fellow
Division of Pulmonary and Critical Care Medicine
Mayo Clinic
Rochester, MN

Burton L. Lesnick, MD, FCCP
Pediatric Pulmonologist
Children’s Healthcare of Atlanta
Atlanta, GA

Parth Rali, MD
Associate Professor
Temple University Hospital
Philadelphia, PA

Eric S. Edell, MD, FCCP
Internist and Pulmonologist
Mayo Clinic
Rochester, MN

Navitha Ramesh, MD, FCCP
Program Director
UPMC Harrisburg
Harrisburg, PA

Kyle B. Enfield, MD, MS, FSHEA, FCCM
Associate Professor of Medicine
Vice Chair, Quality Improvement and Patient Safety
University of Virginia;
Associate Chief Medical Officer, Critical Care
Department of Medicine
University of Virginia Health System
Charlottesville, VA

Lauren Tobias, MD, FCCP
Assistant Professor
Department of Pulmonary, Critical Care & Sleep Medicine
Yale University School of Medicine;
Medical Director
Sleep Program
VA Connecticut
Yale-New Haven Hospital
New Haven, CT

Patricio Escalante, MD, MSc, FCCP
Professor of Medicine and Consultant
Division of Pulmonary, Critical Care Medicine, and Sleep Medicine
Mayo Clinic
Rochester, MN

Kelly Vranas, MD, MCR
Assistant Professor of Medicine
Division of Pulmonary, Allergy, and Critical Care Medicine
Oregon Health & Science University;
Critical Care Health Services Researcher
Portland VA Medical Center
Portland, OR

Tejaswini Kulkarni, MD, MPH, FCCP
Associate Professor of Medicine
Director, Interstitial Lung Disease Program
Division of Pulmonary, Allergy and Critical Care Medicine
The University of Alabama at Birmingham
Birmingham, AL
Minimal Practice Changes, Major Patient Impact

Experience and patient feedback tell us patients are more compliant and have better outcomes when they feel understood. Getting to know your patients in the short window of time you have is challenging. Try these free, self-paced learning modules designed to help you nurture connections faster and more meaningfully.

Building Patient Trust Fundamentals
Quickly create rapport, respond with empathy, and build your relationship.

Building Patient Trust Skills Practice
Apply your empathetic communication skills by conversing with a simulated patient.

The First 5 Minutes® program consists of evidence-based skills to establish trust with your patients in the first 5 minutes of your interactions. With improved communication, you’ll see that it takes less effort to help your patients more.

Get Started

CHEST gratefully acknowledges the following supporters of the First 5 Minutes: Founding Supporters - Amgen, AstraZeneca, Bexar County, Boehringer Ingelheim, Novartis, Regeneron, Sanofi, and VIATRIS. Trailblazer Supporter - GSK
Long-Awaited RSV Vaccines Now Available for Older Adults and Pediatric Patients

Burton L. Lesnick, MD, FCCP

Respiratory syncytial virus (RSV) is highly contagious and transmitted by large aerosol droplets and fomites, either emitted from an infected person or by making surface-to-eye, -nose, or -mouth contact. Severe RSV can increase the risk of bacterial coinfections, pneumonia, and lower respiratory tract infections (LRTI)—particularly in infants and older adults.

Thankfully, 2023 has been a landmark year for RSV approvals. The FDA approved its first RSV vaccine, called RSV prefusion F protein based (RSVpreF) vaccine, for people aged 60 and over in May 2023. In July 2023, the passive monoclonal antibody injection nirsevimab was approved as a preventative option for infants in their first and second winter seasons. Finally, the FDA approved the RSVpreF vaccine for pregnant individuals in late August 2023, with the goal of protecting infants. However, results from a recent phase 3 trial did not show significance with respect to the primary end point.

Birth through 6 months is the leading timeframe of RSV-related death because of the low natural defenses and small airways of infants. On August 3, 2023, the CDC Advisory Committee on Immunization Practices unanimously recommended use of nirsevimab for all infants up to 8 months of age at the start of the RSV season and for infants at risk for severe RSV infection until 19 months of age. This decision was partly based on the MELODY and MEDLEY trials. In an unprecedented move, this monoclonal antibody will be made available through the Vaccines For Children program, the first monoclonal antibody to receive this designation.

It is hoped that uptake of this therapy will result in fewer hospitalizations of infants with RSV bronchiolitis.

Populations at Greatest Risk for Severe Illness From RSV

1. **Newborns**
 - Premature infants
 - < 6 months of age

2. **Children**
 - < 2 years of age with chronic lung disease or congenital heart disease
 - With compromised immune systems
 - With neuromuscular disorders, including difficulty swallowing or clearing mucus secretions

3. **Adults**
 - ≥ 65 years of age
 - With chronic cardiac or pulmonary disease
 - With compromised immune systems

Annual RSV Burden in the United States

Among adults aged ≥ 65 years hospitalized with RSV disease:

- 18% are admitted to an intensive care unit
- 31% receive home health services at discharge
- 26% die within 1 year after admission

RSV in children < 5 years of age is associated with:

- 58,000-80,000 hospitalizations
- 100-300 deaths
- 520,000 emergency department visits
- 1.5 million outpatient visits
The Phase 3 RENOIR Study

34,000+ participants aged ≥ 60 years received the RSVpreF vaccine (n=17,215) or placebo (n=17,069).

- RSV-associated LRTI with ≥ 2 signs or symptoms occurred in:
 - Vaccine: 11 cases
 - Placebo: 33 cases
 - Vaccine efficacy: 66.7%

- RSV-associated LRTI with ≥ 3 signs or symptoms occurred in:
 - Vaccine: 2 cases
 - Placebo: 14 cases
 - Vaccine efficacy: 85.7%

- RSV-associated acute respiratory illness occurred in:
 - Vaccine: 22 cases
 - Placebo: 58 cases
 - Vaccine efficacy: 62.1%

Bottom Line: The vaccine significantly reduced the risk of developing RSV-associated LRTI by 82.6% and severe RSV-associated LRTI by 94.1%.

Preterm Babies and the Need for Protection

Each year in the US, babies are born at < 37 weeks, and nearly 3% are born at < 34 weeks of gestation.

Preterm babies born at < 39 weeks have a greater incidence of respiratory complications and a higher risk of developing diseases over time.

Placenta transfer occurs throughout pregnancy, with the highest levels of antibodies transferred during the third trimester.

Nirsevimab is the first potential immunization to show protection against RSV in the general infant population.

Nirsevimab is being developed as a long-lasting, single dose for all infants:
- Experiencing their first RSV season
- With specific conditions (i.e., congenital heart disease or chronic lung disease), entering their first and second RSV seasons

Medically attended RSV-associated LRTI occurred in:
- Nirsevimab: 12 infants (1.2%)
- Placebo: 25 infants (5.0%)

These findings correspond to an efficacy of 74.5% (95% CI, 49.6 to 87.1; P < 0.001).
Decreasing Pulmonary Embolism-Related Mortality

Parth Rali, MD

As many as 900,000 patients have deep vein thrombosis (DVT) or pulmonary embolism (PE), also called venous thromboembolism (VTE), each year in the United States, with 100,000 deaths per year.¹ In patients with PE, 56% also have DVT, which can affect 30-day mortality rates.² The field of PE is evolving to help decrease mortality from these events. Proper risk stratification is crucial to identify the best approach for each patient, while the presence of comorbidities and unmodifiable risk factors must also be considered when individualizing care and assessing likelihood of mortality.³,⁴ As comorbidities increase, mortality increases in PE.⁴ As well, racial, ethnic, and socioeconomic demographic differences affect PE, with Black patients having greater PE severity and socioeconomically underserved patients having higher follow-up mortality.⁵,⁶

Treatments are also advancing, with many upcoming catheter-based treatments in clinical trials, which have demonstrated rapid recovery of right ventricle function—a primary cause of PE-related mortality.⁷,⁸ The effect of catheter-based treatment on long-term functional outcomes is currently being explored in clinical trials. Artificial intelligence is also being used to aid in diagnosis and treatment.⁹ As the armamentarium of treatment options diversifies, so must our overall approach to management. The PE response team (PERT) strategy uses a multidisciplinary team of experts to further individualize patient care to help decrease mortality and improve follow-up efforts since the post-PE period is a sensitive time for new morbidity.¹⁰,¹¹ With proven risk stratification and management strategies available and new treatments on the way, the field of PE looks to improve not only in patient acute mortality, but also long-term functional outcomes, and early detection of post-PE comorbid conditions.

PE Risk Stratification Method³

Low risk

No evidence of the following:
Hemodynamic instability; Right ventricular dysfunction; Clinical signs, biomarkers, or imaging showing massive or submassive PE

Consider early discharge or home treatment based on Hestia criteria

Intermediate risk

No hemodynamic instability; Presence of right ventricular strain shown in imaging or biomarker testing

Consider further risk stratification and selected patients may need reperfusion to prevent further decline

High risk

Presence of hemodynamic instability

Prompt treatment with reperfusion therapies
Racial, Ethnic, and Socioeconomic Risk Factors in PE5,6,12,13

Ethnicity

Hispanic/Latino patients have lower rates of high-risk PE vs non-Hispanic patients

- Hispanic/Latino patients: 19%
- Non-Hispanic/Latino patients: 25%

Yet similar rates of inpatient mortality

- Female: 6.8%
- Male: 7.5%

Race

Black patients present with PE at a younger age and with higher severity than White patients

- Black patients: 55 years
- White patients: 63 years

Socioeconomic

Nearly 1 in 3 patients from low socioeconomic backgrounds are readmitted within 90 days of discharge after a PE hospitalization.

Sex

Women are more likely to have varicose veins, depression, prolonged immobility, or a history of hormonal therapy...

While men are more likely to have atherosclerotic diseases, lung disease, cancer, or unprovoked PE.

PERT Approach to Decrease Mortality10,14

Step 1
Evaluation and diagnosis

Step 2
Risk stratification

Step 3
Multidisciplinary intervention
Can include pulmonary, critical care, emergency medicine, cardiology, radiology, clinical pharmacy, vascular surgery

Step 4
Management measures based on risk level

Step 5
Assessment of treatment and follow-up
(2 weeks to 3 months)
PE Clinical Trials on the Horizon

The field of PE is adapting catheter-based treatments in acute PE treatments. These treatments aim to have similar efficacy to systemic thrombolytics with less bleeding risk. The following are selected trials that are ongoing and enrolling patients, and hope to generate more scientific evidence in PE treatment landscape.

<table>
<thead>
<tr>
<th>Trial</th>
<th>Drug or Catheter Type</th>
<th>Primary Endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE-TRACT</td>
<td>Anticoagulant therapy vs catheter-directed therapy</td>
<td>3 months: Peak O₂ consumption on CPET 12 months: NYHA classification 7 days: Major bleeding</td>
</tr>
<tr>
<td>PEERLESS</td>
<td>Catheter-directed thrombolysis vs FlowTriever System</td>
<td>Composite end point of all-cause mortality, or intracranial hemorrhage, major bleeding, clinical deterioration, or ICU admission</td>
</tr>
<tr>
<td>PEERLESS II</td>
<td>FlowTriever System vs anticoagulation only</td>
<td>Composite end point of all-cause mortality, or intracranial hemorrhage, major bleeding, clinical deterioration, or ICU admission</td>
</tr>
<tr>
<td>HI-PEITHO</td>
<td>Anticoagulation with heparin vs EkoSonic™ Endovascular System</td>
<td>PE-related mortality, PE recurrence, or cardiorespiratory collapse</td>
</tr>
<tr>
<td>STORM-PE</td>
<td>Anticoagulation vs mechanical aspiration thrombectomy</td>
<td>Change in right ventricle and left ventricle ratio; Post-PE functional outcomes</td>
</tr>
<tr>
<td>PEITH0-3</td>
<td>Alteplase vs anticoagulation only</td>
<td>Death from any cause, hemodynamic decompensation, recurrent PE</td>
</tr>
<tr>
<td>STRIKE-PE</td>
<td>Indigo Aspiration System</td>
<td>Change in right ventricle and left ventricle ratio and composite score of major adverse events; Post-PE functional outcomes</td>
</tr>
<tr>
<td>RESCUE a</td>
<td>The Bashir Endovascular Catheter + r-tPA</td>
<td>Change in right ventricle and left ventricle ratio</td>
</tr>
</tbody>
</table>

CPET, cardiopulmonary exercise testing; ICU, intensive care unit; NYHA, New York Heart Association; PE, pulmonary embolism; RCT, randomized clinical trial; r-tPA, recombinant tissue plasminogen activator

*aFinal results from RESCUE (NCT04248868) posted in April 2023.
Neutrophils and neutrophil serine proteases normally help protect the lungs from harm, but in bronchiectasis they can contribute to inflammation and lung destruction.¹⁻⁶

Visit Insmed’s bronchiectasis Booth #1001 at the CHEST Annual Meeting 2023 in Hawaii

Learn more about inflammation in bronchiectasis at RethinkNCFBE.com

Addressing Physician Burnout in Pulmonology and Critical Care

Kelly Vranas, MD, MCR

Work-related stress has long been a concern for those working in the intensive care unit (ICU); even before the COVID-19 pandemic, it was estimated that up to 45% of critical care physicians had at least one symptom of severe burnout.1-6 In 2020 and the years following, the combination of significantly increased patient morbidity and mortality rates, excessive workloads, and resource limitations negatively impacted employee morale, decreased feelings of professional fulfillment, increased moral distress, and most importantly, heightened mental health concerns among critical care physicians.7-10

While most of the post-pandemic world has returned to “normal,” its effect on the health care industry has been slower to wane; in fact, reported rates of physician burnout remain higher today than they were in 2020.2-6 Almost half of physicians (49%) say their depression affects their patient interactions, while 65% report that their personal relationships are affected.6 In order to course-correct—not only for the sake of our current workforce and patients, but also to ensure better preparation for future public health crises—we must address the more fundamental burnout contributors that the pandemic only amplified.

Common manifestations of burnout²

- Insomnia
- Depression
- Anxiety

Reported Rates of US Physician Burnout²-6,a

*Based on annual surveys of approximately 9,100 – 15,000 physicians across 29 specialties in total.
To mitigate the number of health care professionals leaving practice, some changes must be made:

Combating Physician Burnout and Impending Shortages

Projected physician shortages by 2034:
- 17,800 – 48,000 primary care physicians
- 21,000 – 77,100 non-primary care specialties

To protect health care workers:
- 8 in 10 report physical or verbal abuse at work
- >50% of pulmonologists and intensivists say having too many administrative tasks adds to their burnout

To improve physicians’ time:
- 2 hours vs 1 hour
- 29% of pulmonologists and intensivists agree that lack of control/autonomy contributes to their burnout

To increase mental health care access:
- 16% vs 11%
- Pulmonologists vs Intensivists have sought professional help to reduce their burnout

To improve physician resources:
- Training
- Equipment access
- Feedback forums
- 29% of pulmonologists and intensivists agree that lack of control/autonomy contributes to their burnout

To build morale and engagement:
- 37% vs 58%
- Pulmonologists vs Intensivists say that lack of respect from employers, colleagues, and other staff contributes to their burnout

Key components for building a sense of community among clinicians:
- Support
- Camaraderie
- Mentorship
- Activism
Updated Guidelines for COPD Management: 2023 GOLD Strategy Report

Muhammad Adrish, MD, MBA, FCCP, FCCM

The Global Initiative for Chronic Obstructive Lung Disease (GOLD) Strategy Report is an evidence-based strategy document for chronic obstructive pulmonary disease (COPD) diagnosis, treatment, and prevention; the GOLD report is used worldwide as a tool for implementing effective COPD management.¹ The annual report reviews the major research publications published from the previous years and provides important updated recommendations for care providers.

The 2023 GOLD report includes several new updates, such as a new proposed definition²; strategies for terminology and taxonomy²; etiotypes for COPD²; screening and risk factor updates¹; and vaccination recommendations.¹ The ABCD Assessment Tool has been revised to recognize the clinical relevance of exacerbations,³ and the section on Intervventional and Surgical Therapies for COPD has been expanded.¹ Information on imaging and computed tomography (CT) has been included,¹ and issues related to inhaled delivery⁴ and adherence⁵ have been addressed. Also included is an expanded role of triple inhaled therapy in select patient populations,⁶ and the complexity of COPD is also examined—which involves not only cigarette smoking, but other exposures as well.⁷

Key Changes in the 2023 GOLD Report ²,³,⁸-¹⁰

Proposed New Definition of COPD²:
“COPD is a heterogeneous lung condition characterized by chronic respiratory symptoms (dyspnea, cough, expectoration) due to persistent abnormalities of the airways (bronchitis, bronchiolitis), alveoli (emphysema), and/or pulmonary vessels, confirmed by spirometrically determined airflow limitation and/or objective evidence of structural or physiological pulmonary dysfunction.”

COPD can be caused by several factors unrelated to smoking. The GOLD report attempts to address this heterogeneity by proposing the following etiotypes for COPD.

New Proposed Taxonomy (etiotypes) for COPD²

COPD-G for genetically determined COPD
COPD-D for patients with abnormal lung development
COPD-C for COPD associated with cigarette smoking
COPD-I for COPD due to infections
COPD-A for patients with childhood asthma
COPD-U for COPD due to an unknown cause
COPD-P for COPD due to biomass and pollution exposure

New Section: Chronic Bronchitis⁸
Chronic bronchitis can also be found in never-smokers, suggesting the involvement of other factors, such as:

- Chemical fumes
- Domestic heating and cooking fuels
- Exposure to inhaled dusts
- Biomass fuels
- Exposure to inhaled dusts
- Biomass fuels
Updated COPD Assessment Tool\(^3\)

The ABCD patient assessment tool is now called the **ABE Assessment Tool**:

- **Group A**
 - mMRC dyspnea scale score of 0-1
 - CAT score < 10
 - History of 0-1 moderate exacerbation not leading to hospitalization

- **Group B**
 - mMRC score ≥ 2
 - CAT score ≥ 10
 - History of 0-1 moderate exacerbation not leading to hospitalization

Group E

- History of ≥ 2 moderate exacerbations or ≥ 1 exacerbation leading to hospitalization, irrespective of mMRC or CAT scores

The algorithm also recommends considering LABA + LAMA + ICS for patients in group E if blood eosinophil counts are ≥ 300 cells per μL.

ICS, inhaled corticosteroid; LABA, long-acting β2-agonist; LAMA, long-acting muscarinic agent

COPD Exacerbation Definition Update\(^9\)

“An event characterized by increased dyspnea and/or cough and sputum that worsen over ≤ 14 days, which may be accompanied by tachypnea and/or tachycardia and is often associated with increased local and systemic inflammation caused by airway infection, pollution, or other insult to the airways.”

COPD and Comorbidities\(^1,10\)

COPD often coexists with other diseases that may have a clinically significant impact on prognosis:

- Cardiovascular disease
- Obstructive sleep apnea
- Periodontitis
- Metabolic syndrome, diabetes
- Gastroesophageal reflux disease
- Osteoporosis or frailty
- Anemia
- Polycythemia
- Anxiety, depression
- Lung cancer
- Bronchiectasis
- Cognitive impairment

CAT, COPD Assessment Test; mMRC, modified Medical Research Council
Progressive Pulmonary Fibrosis: Understanding Its Many Forms

Tejaswini Kulkarni, MD, MPH, FCCP

The updated idiopathic pulmonary fibrosis guideline from the American Thoracic Society, European Respiratory Society, Japanese Respiratory Society, and Asociación Latinoamericana de Tórax was based on multiple clinical trials and includes many different disease manifestations. The intention of the update is to more accurately monitor disease progression to help inform therapeutic decisions for our patients. Interstitial lung diseases (ILD) most likely to develop a progressive phenotype include idiopathic, nonspecific interstitial pneumonia; unclassifiable ILD; fibrotic hypersensitivity pneumonitis; and ILDs associated with autoimmune disorders. Management of progressive pulmonary fibrosis (PPF) is far from a “one size fits all” approach. Many variables need to be better understood, such as how different disease etiologies progress, the role of comorbidities, and the best timing and sequence of therapy including escalation in immunosuppression and/or antifibrotic agents for different patient profiles.

New Definition for PPF

In 2022, the American Thoracic Society established a new definition for PPF, formerly referred to as progressive fibrosing interstitial lung disease. Patients with ILD with radiological evidence of pulmonary fibrosis meet the criteria for PPF if they have at least 2 of the following findings with no alternative known cause:

- Worsening Respiratory Symptoms
- Physiological Evidence: Absolute decline in either:
 - FVC > 5% predicted within 1 year of follow-up
 - DLCO > 10% predicted within 1 year of follow-up
- Radiological Evidence: ≥1 of the following signs:
 - Increased:
 - Extent or severity of traction bronchiectasis
 - Extent or coarseness of reticular abnormality
 - Lobar volume loss
 - Honeycombing
 - New:
 - Ground-glass opacity with traction bronchiectasis
 - Fine miliary nodules

DLCO, diffusing capacity for carbon monoxide; FVC, forced vital capacity

Pathophysiology of Pulmonary Fibrosis

Early Phase

- Disease-specific triggers
 - Lymphocyte activation/differentiation
 - Autoimmunity
 - Exaggerated immune response
 - Chronic granulomatous inflammation (often from an inhaled antigen or other exposure)

- Environmental triggers
 - Tobacco smoking
 - Occupational exposures
 - Air pollution
 - Microaspiration
 - Viral infection

Later Phase

- Uncontrollable variables
 - Aging
 - Genetic background
 - Epigenetic modifications

Impact of extracellular matrix production by fibroblasts

- Lung tissue remodeling and honeycombing
- Tissue stiffness and hypoxia upregulate profibrotic cytokine pathways and myofibroblast activation
- Perpetuating fibrogenesis
Burdens of PPF

Health-Related Quality of Life
Nearly all patients experience symptoms such as dyspnea, cough, and fatigue, which negatively affect:
- sleep, socialization, physical activity, mood

Psychological
Patients report:
Negative mental health effects such as stress, anxiety, frustration, and fear
- 70%

Daily Living
Patients report:
- Difficulty completing housework
- Limited ability to carry groceries
- Experts estimate:
- 23% of patients lost their jobs as a result
- 48% have a permanent disability

Economic
Direct costs for patients with PPF in the United States are estimated to be...
- nearly $78,000 per patient per year

Drivers of Direct Costs
- 55% Inpatient
- 22% Outpatient
- 18% Medication
- 5% Other/not specified

In general, the overall prognosis and implication of PPF offer insight into early phase and later phase variables that are critical when defining the comprehensive burdens, which impact not only direct costs but also the specific approach clinicians take in treating this disease.
Obstructive sleep apnea (OSA) is a disorder in which the upper airway repeatedly collapses during sleep, resulting in hypoxemia and sleep disruption. Approximately 9-17% of women and 25-30% of men in the United States are diagnosed with OSA.1-2 Patients may present with a range of symptoms, including daytime sleepiness, snoring, breathing pauses, or unexplained awakenings from sleep.1 OSA severity is classified according to the apnea-hypopnea index (AHI), and defined by the presence of either ≥ 15 events per hour or 5-14 events per hour with symptoms such as excessive daytime sleepiness, insomnia, or impaired sleep-related quality of life.1 OSA has been associated with stroke, hypertension, atrial fibrillation, coronary artery disease, heart failure, and mood disorders.3 Continuous positive airway pressure (CPAP) is the standard of care for treating OSA in most patients and is highly cost-effective.4

Unfortunately, racial disparities exist in sleep apnea, as with sleep health generally. Black individuals have disproportionately high rates of OSA and higher OSA severity in comparison with White patients.5 Racial inequity also exists in disease outcomes and sleep apnea-related mortality.5,6 CPAP adherence may be lower in marginalized racial groups, with Black patients demonstrating lower nightly CPAP usage.4 Initiatives are needed to improve sleep health equity, such as through increased access to sleep care through telehealth, lessening barriers to sleep apnea diagnostics, and reducing structural inequities associated with CPAP treatment including cost.

Obesity is a well-established risk factor for sleep apnea, and all patients whose body mass index (BMI) is elevated should be counseled on weight loss.7,8 For patients unable to acclimate to CPAP, alternatives are available; there was increased reliance upon these during the recent major CPAP recall.9 Some alternatives include mandibular advancement devices, positional therapy, and hypoglossal nerve stimulation therapy.9 Emerging research is exploring the possibility of drug therapy to manage sleep apnea in the future.9

Comorbidities in Sleep Apnea3,10

80% of those diagnosed with OSA have comorbidities.

Racial Disparities in Sleep Apnea–Related Mortality6

<table>
<thead>
<tr>
<th>Age-adjusted mortality (per 1,000,000 population)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
</tr>
<tr>
<td>Black patients</td>
</tr>
<tr>
<td>White patients</td>
</tr>
</tbody>
</table>

Black male patients' OSA-related mortality has increased by 2.7% from 1999-2019.6
ATS Clinical Practice Guidelines for Weight Management in Sleep Apnea

Patients with OSA who are overweight or obese should be treated with lifestyle interventions, including:

1. Reduced-calorie diet
2. Exercise/physical activity
3. Behavioral counseling

For patients who need further assistance, anti-obesity pharmacotherapy and/or bariatric surgery* should be considered.

*Anti-obesity pharmacotherapy for BMI ≥ 27 and consider bariatric surgery referral for BMI ≥ 35.

ATS, American Thoracic Society

Alternative Treatments to CPAP

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Description</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavioral modification</td>
<td>Weight management, minimizing alcohol and sedatives before bedtime, and positional therapy (avoiding supine sleep)</td>
<td>Greater weight loss leads to more reduction in respiratory events; weight loss rarely leads to full resolution of OSA.</td>
</tr>
<tr>
<td>Mandibular advancement device</td>
<td>Plastic mouthpiece that moves the lower jaw forward, opening the airway</td>
<td>Candidates must have sufficient dentition in upper and lower jaws; the device is custom-fit by a dentist.</td>
</tr>
<tr>
<td>Hypoglossal nerve stimulator</td>
<td>Implantable device that stimulates the tongue to protrude in sync with a patient’s respirations</td>
<td>Candidates must have BMI ≤ 32-35 and favorable soft palate collapse during sleep.</td>
</tr>
<tr>
<td>Other upper airway surgeries</td>
<td>Uvulopalatopharyngoplasty (UPPP) and variants that aim to reduce pharyngeal collapse and/or adenotonsillar enlargement</td>
<td>Patient selection is based on presence of a surgically correctable problem. Often guided by craniofacial imaging with a ~50% success rate.</td>
</tr>
</tbody>
</table>

Effect of Weight Loss on Apnea Hypopnea Index (AHI)

- Lost 5% body weight
- Lost 10% body weight
- Lost ≥ 10% body weight

Effect: 11.7% decrease in AHI

Lost 5% body weight

Lost 10% body weight

Lost ≥ 10% body weight

Effect: 37.9% decrease in AHI

Effect: 49.3% decrease in AHI

CPAP is the most effective treatment for OSA. Efficacy varies across studies, from ~20% to 80%.
Get Hands-on With CHEST Simulation Courses This November

From ICU to Home: Advances in Invasive and Noninvasive Ventilation
November 9 – 10
Learn state-of-the-art techniques for managing home mechanical ventilators for patients with neuromuscular disease, obstructive lung disease, and chronic respiratory failure secondary to COVID-19.

Comprehensive Pleural Procedures With Cadavers
November 17
Learn methods for managing patients with pleural disorders, including a step-by-step approach to ultrasound-guided thoracentesis, tunneled indwelling pleural catheter placement, and more.

Advanced Airway Management With Cadavers
November 18
Practice basic and advanced ICU intubation skills for managing challenging airway scenarios. Build your competency with extraglottic airway insertion and cricothyrotomy methods via surgical and Seldinger techniques.
Early detection of lung cancer by screening with low dose computed tomography (LDCT) scanning has long been investigated as a potential means of reducing related deaths.1,2 The 2011 National Lung Screening Trial (NLST) compared LDCT scanning with standard chest radiograph (CXR). Results showed a significant reduction in mortality in high-risk current and former smokers who were screened annually (3×) with LDCT scan vs CXR.3

LDCT scanning for lung cancer is currently a standard of care, partially due to the results of the NLST.4,5 In 2013, LDCT scanning was recommended by the US Preventive Services Task Force (USPSTF), making about 8 million Americans eligible for screening.6 In 2019, an extended NLST cohort follow-up study showed that earlier detection with LDCT scanning not only delayed lung cancer death, but also prevented it—or at least delayed it by a decade or more.4,7 This sparked another change in eligibility criteria in the 2021 USPSTF guidelines, allowing an additional 6.5 million people to be eligible for screening.6

Unfortunately, LDCT scanning has some negative aspects to its use, such as high false-positive rates, repeated radiation exposure, and the lack of ability to distinguish between nodules that are benign or malignant.8 There is a need for adjunctive testing for screening. Some current research is focusing on the development of liquid biomarkers intended to be complementary to imaging as a method of using noninvasive lung cancer diagnostics.

Lung Cancer Screening: A Need for Adjunctive Testing

Eric S. Edell, MD, FCCP

Early detection of lung cancer by screening with low dose computed tomography (LDCT) scanning has long been investigated as a potential means of reducing related deaths.1,2 The 2011 National Lung Screening Trial (NLST) compared LDCT scanning with standard chest radiograph (CXR). Results showed a significant reduction in mortality in high-risk current and former smokers who were screened annually (3×) with LDCT scan vs CXR.3

LDCT scanning for lung cancer is currently a standard of care, partially due to the results of the NLST.4,5 In 2013, LDCT screening was recommended by the US Preventive Services Task Force (USPSTF), making about 8 million Americans eligible for screening.6 In 2019, an extended NLST cohort follow-up study showed that earlier detection with LDCT scanning not only delayed lung cancer death, but also prevented it—or at least delayed it by a decade or more.4,7 This sparked another change in eligibility criteria in the 2021 USPSTF guidelines, allowing an additional 6.5 million people to be eligible for screening.6

Unfortunately, LDCT scanning has some negative aspects to its use, such as high false-positive rates, repeated radiation exposure, and the lack of ability to distinguish between nodules that are benign or malignant.8 There is a need for adjunctive testing for screening. Some current research is focusing on the development of liquid biomarkers intended to be complementary to imaging as a method of using noninvasive lung cancer diagnostics.

LDCT Scan vs CXR3,4,6,7

- **Mortality risk**: 15%-20% lower with LDCT scan
- **Positive screens**: 24.2% vs 6.9%
- **False positives**: 96.4% vs 94.5%
- **Detection stage**
 - Stage I: 50.0% vs 31.1%
 - Stage IV: 21.7% vs 36.1%
- **Incidence of diagnosis, cases per 100,000**
 - 645 vs 572

2011 NLST Study Findings3,7

- 53,456 current/former heavy smokers ages 55-74 with:
 - Smoking history of ≥ 30 pack-years
 - No history of lung cancer

2019 Extended NLST Follow-up

- Median follow-up times of 11.3 years for incidence and 12.3 years for mortality; the originally reported reduction in lung cancer deaths with LDCT scan was sustained.

2023 NLST Update6

- Analysis of 1 million+ lung cancer screenings with LDCT scans confirmed staging results observed in the NLST6

- **Mortality risk**
 - ~3 fewer deaths per 1000 patients in the LDCT scan arm, like original analysis

- **Overdiagnosis rate**
 - Improved from 18% in original analysis

- **Detection stage**
 - Stage I: 39.6% vs 7.5%
 - Stage IV: 27.5% vs 35.5%

- **Incidence of diagnosis, cases per 10,000**
 - 64.8 vs 62.9

**Analysis of 1 million+ lung cancer screenings with LDCT scans confirmed staging results observed in the NLST6

- 22.3% adherence to screening guidelines
- Current smoking and Black or Hispanic race/ethnicity correlated with poor adherence**
Potential Benefits of Biomarkers for Detecting Lung Cancer

- **Distinguish benign from malignant nodules**
- **Noninvasive diagnostic tool**
- **Useful for early detection and diagnosis**
- **Decreases unnecessary radiologic tests**
- **Identifies high-risk patients**

Review of Lung Cancer Biomarkers

Autoantibodies
- Blood-based biomarker showing promise in early detection and diagnosis; limited ability to identify high-risk populations for screening
- The EarlyCDT 7-autoantibody panel measures p53, NY-ESO1, CAGE, GBU4–5, HuD, MAGE A4, and SOX
- Sensitivity 37%-41%
- Specificity 91%

Complement fragments
- Higher concentrations of C4d have been detected in patients with lung cancer (especially higher stages), and are associated with shorter overall survival
- Sensitivity 44%
- Specificity 89%

Blood proteins
- Multiple studies have supported use to aid in early detection and accurate diagnosis; challenges such as low concentration and sample variability remain
- Various tests have shown wide ranges:
 - Sensitivity 49%-97%
 - Specificity 44%-96%

Circulating tumor DNA (ctDNA)
- Demonstrated value in detecting advanced-stage cancer; little evidence exists regarding early detection
- One new test, CancerSEEK, uses 8 protein biomarkers + ctDNA to detect early-stage cancers
- Sensitivity 59%
- Specificity 99%

microRNA
- Small, noncoding, single-stranded RNA molecules linked to the pathogenesis of most cancers; excellent biomarkers due to stability and resistance to degradation
- Sensitivity 78%-87%
- Specificity 75%-81%

DNA methylation
- An epigenetic modification that has demonstrated potential for early detection of lung cancer
- One study noted SOX17, TAC1, and HOXA7 as the best performing markers
- Using sputum:
 - Sensitivity 98%
 - Specificity 71%
- Using plasma:
 - Sensitivity 93%
 - Specificity 62%
Asthma Across a Woman’s Lifespan

Navitha Ramesh, MD, FCCP

The severity and symptoms of asthma vary greatly across a woman’s lifespan. Gender-based variances start early, with boys having a higher asthma prevalence than girls in childhood, and women having a higher prevalence than men starting around puberty and through adulthood, related to changes in sex hormones.\(^1\) In the pediatric age group, questions arise about both the necessity and choice of biologic therapies and how best to transition patients from pediatric to adult care.\(^2,3\) During this transition, patients often have worsening symptoms mainly due to decreased adherence to medications, lack of insurance, or lack of parental and social support.\(^3\)

In adulthood, around 13% of women have asthma symptoms during pregnancy, necessitating maintenance treatment with inhalers.\(^4\) In some women, asthma symptoms tend to worsen during pregnancy due to some of the natural changes in lung function and breathing patterns during pregnancy.\(^5,5\) Uncontrolled asthma in pregnancy can lead to adverse effects for both mother and fetus. Maternal adverse outcomes include preeclampsia, placental abruption, increased risk of Caesarean sections, increased risk of gestational diabetes mellitus, and pulmonary embolism.\(^4-6\) Child adverse outcomes include low birth weight, increased risk of minor congenital malformations, and asthma.\(^4,5\) Aging in women also affects lung function, including reducing the forced expiratory volume in 1 second (FEV\(_1\)).\(^7\) Menopause specifically is related to decreased lung function due to changes in sex hormones, and this effect is seen even more in women with asthma.\(^7,8\) It is important for providers to be aware of asthma manifestations throughout a woman’s lifespan and personalize care accordingly.

FDA-Approved Biologics for Pediatric Asthma\(^2,9\)

<table>
<thead>
<tr>
<th>Biologics</th>
<th>Approved Age</th>
<th>Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Omalizumab</td>
<td>6 years</td>
<td>Inhibits IgE, preventing activation of TH2</td>
</tr>
<tr>
<td>Mepolizumab</td>
<td>6 years</td>
<td>Binds to IL-5, reducing eosinophil levels</td>
</tr>
<tr>
<td>Benralizumab</td>
<td>12 years</td>
<td>Binds to IL-5, causing apoptosis of eosinophils</td>
</tr>
<tr>
<td>Dupilumab</td>
<td>6 years</td>
<td>Binds to IL-4, downregulating TH2 inflammatory pathways</td>
</tr>
<tr>
<td>Tezepelumab</td>
<td>12 years</td>
<td>Binds to TSLP, inhibiting upstream action in the inflammatory cascade</td>
</tr>
</tbody>
</table>

Ig, immunoglobulin; IL, interleukin; TH2, T helper 2; TSLP, thymic stromal lymphopoietin
As children grow, their lungs develop more alveoli and increase in capacity, which impacts asthma symptoms.\(^1\)\(^2\) These changes, combined with the hormonal shifts associated with puberty, can worsen asthma symptoms in women.\(^3\)

Challenges in Transitioning from Pediatric to Adult Asthma Care\(^3,\)\(^12\)

A survey of HCPs treating adolescent and young adult patients with allergy and asthma revealed…

- **Decline in Adherence**
 - Another study reported an asthma treatment adherence rate of 77% in adolescents, vs 92% in children.

- **86%** feel they lack transitional guidance
- **87%** agree training is needed
- **< 5%** report using a transition readiness questionnaire with adolescents
- **48%** acknowledge the lack of an established feedback system between pediatric and adult medical services

Pregnancy and menopause are also important times for asthma care during a woman’s life, due to the physical changes that take place during these transitions.

Effects of Asthma During Pregnancy\(^5\)

- **Respiratory:**
 - Progesterone induces hyperventilation and dyspnea; as fetus grows, diaphragm is displaced, and functional residual capacity decreases by 20%

- **Immune:**
 - Proinflammatory chemokine release at beginning, then anti-inflammatory environment later in pregnancy; pregnant women with asthma have higher levels of proinflammatory chemokines and oxidative stress

- **Cardiovascular:**
 - Cardiac output increases, blood pressure decreases, plasma volume decreases

- Asthma negatively affects the fetus if exacerbations continue, so treatment with inhaled corticosteroids, short-acting beta-agonists, or bronchodilators is recommended. More studies are needed to determine if biologic medications should be continued or prescribed during pregnancy.

Airway Remodeling and Lung Function Decline During Menopause\(^8,\)\(^\text{a}\)

- **Mean FVC decline:**
 - Postmenopausal women: \(-12.5\) mL/y
 - Transitional women: \(-10.2\) mL/y

- **Mean FEV\(_1\) decline:**
 - Postmenopausal women: \(-5.2\) mL/y
 - Transitional women: \(-3.8\) mL/y

\(\text{FEV}_1,\) forced expiratory volume in 1 second; \(\text{FVC},\) forced vital capacity

\(\text{a}\) All data compared to regularly menstruating women.
Introducing new open access journals to the journal
CHEST® portfolio

CHEST® Pulmonary and CHEST® Critical Care editors are seeking high-quality submissions in all clinically relevant areas.

Reasons to publish in CHEST Pulmonary and CHEST Critical Care

QUALITY
Brought to you in the same portfolio as the journal CHEST® (11.393 Impact Factor).

HIGH USAGE AND VISIBILITY
Your article will be featured on multiple hosting platforms, including ScienceDirect, which has an audience of more than 1.5 million visitors daily.

OPEN ACCESS
CHEST Pulmonary and CHEST Critical Care are peer-reviewed gold open access journals. Upon acceptance, your article will be available online within days, and it will be permanently and freely available online to read and share.

Learn More & Submit
Although we are officially living in a “post-pandemic” world, some long-term global impacts of COVID-19 are still being addressed. We remain off track on global tuberculosis (TB) milestone targets due to halted progress over the last 3 years, with more people going undiagnosed and untreated for TB compared with pre-pandemic years.1 Drug-resistant TB (DR-TB) and multidrug-resistant TB (MDR-TB) continue to represent a major burden, and global spending on TB efforts remains significantly lower than what is needed to reach goals set forth by World Health Organization (WHO).1

Despite these challenges, there are also some exciting updates. We now know that TB treatment success rates remained steady during the pandemic (86%), and strong efforts have been made to address DR-TB and MDR-TB via improved treatment options with highly effective, all-oral, shortened treatment regimens, as well as new and promising testing modalities.1–3

Tuberculosis Management:
Returning to Pre-Pandemic Priorities

Patricio Escalante, MD, MSc, FCCP, and Paige K. Marty, MD

Although we are officially living in a “post-pandemic” world, some long-term global impacts of COVID-19 are still being addressed. We remain off track on global tuberculosis (TB) milestone targets due to halted progress over the last 3 years, with more people going undiagnosed and untreated for TB compared with pre-pandemic years.1 Drug-resistant TB (DR-TB) and multidrug-resistant TB (MDR-TB) continue to represent a major burden, and global spending on TB efforts remains significantly lower than what is needed to reach goals set forth by World Health Organization (WHO).1

Despite these challenges, there are also some exciting updates. We now know that TB treatment success rates remained steady during the pandemic (86%), and strong efforts have been made to address DR-TB and MDR-TB via improved treatment options with highly effective, all-oral, shortened treatment regimens, as well as new and promising testing modalities.1–3

Global Burden of TB

4.5% increase from 2020 to 2021

- Estimated TB cases

While the number of diagnosed cases increased from 2020 to 2021, the decrease compared with 2019 indicates a probable growing number of undiagnosed and untreated cases (about 40% globally).

Newly diagnosed TB cases

Since the pandemic, the global declining trend in the number of deaths has been reversed, unfortunately.

Deaths from TB

- 90% of the global reduction in new TB diagnosis reports can be accounted for by just 5 high TB burden countries.
Tackling Drug-Resistant TB Globally

Each year, about **500,000 new cases** of DR-TB or MDR-TB emerge, yet **only 1 in 3** of these patients receive treatment.1,3

This represents a **17% decrease** compared with pre-pandemic treatment rates.1

The number of patients with DR-TB or MDR-TB has increased by **20% annually** over the last decade.4

Treatment of Drug-Resistant TB

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Duration (months)</th>
<th>Evidence</th>
<th>Guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPaLM/BPaL</td>
<td>6</td>
<td>~90% cure rate</td>
<td>Patients are 2.2× more likely to experience favorable 24-month outcomes vs standard of care.</td>
</tr>
<tr>
<td>All-oral, BDQ-based</td>
<td>9</td>
<td>Studies have shown success rates similar to 6-month BDQ regimens.</td>
<td></td>
</tr>
<tr>
<td>treatment for MDR-TB and XDR-TB</td>
<td></td>
<td></td>
<td>Use in patients with MDR/DR-TB without previous second-line treatment, FQ resistance, or extensive pulmonary or severe extrapulmonary TB disease.</td>
</tr>
<tr>
<td>Individualized longer</td>
<td>18+</td>
<td>Varies based on drug grouping</td>
<td></td>
</tr>
<tr>
<td>regimens</td>
<td></td>
<td></td>
<td>Although new, shorter regimens are preferred, longer regimens are still necessary for patients with extensive forms of DR-TB or who are ineligible for shorter regimens.</td>
</tr>
</tbody>
</table>

BDQ, bedaquiline; BPaLM, bedaquiline, pretomanid, linezolid, moxifloxacin; FQ, fluoroquinolone; XDR, extensively drug-resistant.

Notable Molecular Drug Resistance Testing Tools

By laboratory network level

Level 1
- Rapid diagnostics for TB and initial drug resistance detection
 - Xpert MTB/RIF
 - Xpert Ultra
 - Xpert MTB/XDR
 - Truenat MTB
 - TB-LAMP
 - AFB smear microscopy
 - LF-LAM
 - Low complexity automated NAAT
 - Specimen referral

Level 2
- May require more expertise or biosafety precautions
 - FL-LPA
 - SL-LPA
 - Moderate complexity automated NAAT
 - High complexity reverse hybridisation NAAT

Level 3
- Requires highly advanced skills and infrastructure; focus on troubleshooting and surveillance
 - Culture using liquid media
 - Phenotypic DST
 - Genome sequencing

AFB, acid-fast bacilli; DST, drug susceptibility testing; FL, first-line; LAMP, loop-mediated isothermal amplification; LF-LAM, lateral flow lipoarabinomannan assay; LPA, line-probe assay; NAAT, nucleic acid amplification test; SL, second-line; TB, tuberculosis.
Long COVID: Advocating for Patients and Implementing Effective Techniques

Kyle B. Enfield, MD, MS, FSHEA, FCCM

While definitions of postacute sequelae of SARS-CoV-2 (PASC), commonly referred to as long COVID, are heterogeneous, it is internationally recognized that some patients have symptoms that persist after recovery from their acute illness.1,2 Most clinicians agree that this disease manifestation begins at around 60 to 90 days after original COVID-19 infection, based on the World Health Organization (WHO) definition.1 Long COVID has similarities to postviral infections seen in SARS, MERS, Ebola, and West Nile virus.1,3 Theories on its potential cause include ongoing inflammation and autoimmunity, among other theories.1,2

Currently, no FDA-approved treatments are available for long COVID and most patients are receiving variable care with off-label use of drugs.1 Multiple clinical trials are in early stages. Certain nonpharmacological approaches have been effective for 2 common lingering long COVID symptoms: exercise intolerance and fatigue.4 These techniques provide patients with tips to help manage decreased energy levels and provide breathing exercises for patients experiencing exercise intolerance.4

Long COVID is a challenge for the medical community, but progress is being made in pinpointing causes, effective treatments, and techniques to help people who continue to have symptoms after having had COVID-19.1,4

Long COVID Prevalence in the United States5

![Long COVID Prevalence Graph]

June 2022: 19% January 2023: 11%

Based on the overall population of patients who had COVID-19

Among those who have long COVID:
- Clinically significant activity limitations: 27%
- Reported activity limitations: 21%
- Minimal activity limitations: 52%
- No reported activity limitations: 21%

Proposed Mechanism and Causes of Long COVID1,2,6,7

Immune dysregulation:
chronic stimulation of T cells and B cells from viral reservoir, persistence of pro-inflammatory cells, altered cytokine production, altered immunometabolism pathways

Dysfunctional neurological signaling and neuroinflammation:
dysfunctional signaling in brainstem and vagus nerve, neuroinflammation and microglia activation, oxidative stress

Persistent endothelial injury:
microvascular blood clotting with endothelial injury

Microbiome dysbiosis:
SARS-CoV-2 adversely affects the microbiome, causing reduced microbial diversity

Autoimmunity and immune priming:
molecular mimicry, autoimmune antibodies, microbial breakdown of tolerance
Breathing Techniques for Exercise Intolerance and Fatigue

1. Nose breathing:
 - Sit upright on the edge of a chair
 - Place hand on the top of stomach
 - Keep mouth closed
 - Breathe in through your nose and feel your stomach rise as you exhale, let the air leave your lungs gently
 - Repeat for 1 minute

2. Yawn to smile breathing:
 - Sit upright
 - Reach arms overhead
 - Create a big stretching yawn
 - Bring your arms back down and finish by smiling for 3 seconds
 - Repeat for 1 minute

3. Humming breathing exercise:
 - Sit upright
 - Place your hands on the sides of your stomach
 - Breathe in through your nose
 - As you exhale, let the air leave your lungs gently
 - Once stomach is full, exhale with lips closed while humming
 - Repeat for 1 minute

The UK’s National Institute for Health and Care Excellence (NICE) recommends against a graded exercise program for people recovering from COVID-19. Graded exercise programs are structured exercise programs that gradually increase the amount of physical activity.

Tips for Dealing with Fatigue

1. Stop
 - Stop trying to push limits.
 - Overexertion delays recovery.

2. Rest
 - Rest often and do not wait until symptoms worsen to rest.

3. Pace
 - Pace yourself on cognitive and daily physical activities to help deal with fatigue triggers.

4. Learn
 - Learn your new limits and how much energy you have daily. Plan accordingly.

Clinical Trials for Long COVID Treatments

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Class of Drug</th>
<th>Clinical Trial Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paxlovid</td>
<td>Protease inhibitor</td>
<td>Phase 2</td>
</tr>
<tr>
<td>Sodium pyruvate nasal spray</td>
<td>Pyruvic acid</td>
<td>Phase 2/3</td>
</tr>
<tr>
<td>Nirmatrelvir/ritonavir</td>
<td>Protease inhibitor</td>
<td>Phase 2</td>
</tr>
<tr>
<td>Prednisolone</td>
<td>Corticosteroids</td>
<td>N/A</td>
</tr>
<tr>
<td>Hyperbaric oxygen chamber</td>
<td>N/A</td>
<td>Phase 2</td>
</tr>
<tr>
<td>Naltrexone and NAD+</td>
<td>Opiate antagonist, and involved in glycolysis</td>
<td>Phase 2</td>
</tr>
</tbody>
</table>

Based on a ClinicalTrials.gov search of treatment: recruiting, active, not recruiting, completed, enrolling by invitation studies; Long+COVID. Results as of August 2, 2023.

N/A, not available; NAD+, nicotinamide adenine dinucleotide.

The RECOVER Initiative is also working to collect data on long COVID to discover the long-term effects and improve current treatment options. Learn more at www.recovercovid.org.
Decreasing Pulmonary Embolism-Related Mortality

Addressing Physician Burnout in Pulmonology and Critical Care

Updated Guidelines for COPD Management: 2023 GOLD Strategy Report

Patients with benign nodules managed with the Nodify XL2® test were 74% less likely to undergo an unnecessary invasive procedure compared to the control group in a prospective, real-world clinical utility registry study.

Come see us in Honolulu for CHEST 2023!
Booth #1831

Stop by to learn about Nodify Lung® Nodule Risk Assessment Testing to reclassify risk of malignancy.

Scan the QR code to find out about the presentations and events Biodesix will be hosting at the 2023 CHEST Annual Meeting.

biodesix.com