Advances in the Management of Cystic Fibrosis

Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:30–5:35 AM</td>
<td>Welcome and Introduction</td>
<td>Paula J. Anderson, MD (Chair)</td>
</tr>
<tr>
<td>5:35–5:50 AM</td>
<td>Review of Patient Case Presentation / Collection of Benchmark Outcomes Data</td>
<td>Paula J. Anderson, MD (Chair)</td>
</tr>
<tr>
<td>5:50–6:10 AM</td>
<td>Updates on CF Mutations and their Role in Personalized Treatment</td>
<td>Paula J. Anderson, MD</td>
</tr>
<tr>
<td>6:10–6:30 AM</td>
<td>Current and Emerging CF Treatments</td>
<td>Rubin Cohen, MD</td>
</tr>
<tr>
<td>6:30–6:50 AM</td>
<td>Improving the Prevention and Treatment of Early and Chronic Airway Infections</td>
<td>Susanna McColley, MD</td>
</tr>
<tr>
<td>6:50–7:00 AM</td>
<td>Re-Review of Patient Case Presentation / Collection of Post-Education Outcomes Data</td>
<td>Paula J. Anderson, MD (Chair)</td>
</tr>
</tbody>
</table>
Learning Objectives

• Discuss the latest information on CF mutations and the impact on personalized treatment of the disease
• Describe the safety and efficacy of currently available and emerging CF treatments
• Identify strategies to improve the prevention and treatment of early and chronic airway infections

Do you actively care for patients with cystic fibrosis?

A. Yes
B. No
If you are actively caring for patients with cystic fibrosis, what type of patients do you see?

A. Pediatric
B. Adult
C. Both pediatric and adult

Advances in the Management of Cystic Fibrosis

Case: 29-year-old Caucasian Male
Case: 29-Year-Old Caucasian Male

History

- Recurrent heat exhaustion since age 8–9
- IDDM diagnosed at age 22
- Frequent bronchitis; takes antibiotics every few months
- Pneumonia 2 years ago
- ¼ c brown sputum daily
- Salty powder on skin after sweating
- Found to be infertile 1 year ago; absent vas deferens
- Internet search—could this be CF?
- Requested testing for CF from local PCP
- Sweat chloride 70 mEq/L
- Genotyping: G551D; 2789+5G→A
- Parental genotyping confirms 1 mutation from each
- 1 stool daily (bulky, foul-smelling)
- Patient has maintained weight and denies sinus problems

Case: 29 Year-Old Caucasian Male

- Physical
 - Well appearing man; BMI 30
 - Significant only for purulent rhinorrhea and swollen turbinates
 - Lungs clear; No clubbing

- Testing
 - Spirometry: mild obstruction; FVC 82% predicted; FEV₁ 72% predicted; FEV₁/FVC ratio 71%
 - CXR: fibronodular changes in both upper lobes
 - Sputum culture: Mycobacterium avium-intracellulare, Aspergillus, sensitive S. aureus
 - Labs: BMP normal, but glucose 260 mg/dL; HgbA1C 9.8; LFT normal; vitamins A, D, E low; INR 1.1; IgE 22
This clinical presentation and genotyping is consistent with a diagnosis of:

A. Chronic bronchitis
B. CFTR related metabolic syndrome
C. Nonclassic cystic fibrosis
D. Allergic bronchopulmonary aspergillosis

Indicated therapies for this patient would include:

A. rhDNAse (Pulmozyme®), airway clearance, TOBI®
B. rhDNAse (Pulmozyme®), Ivacaftor (Kalydeco®), airway clearance
C. Pancreatic enzymes, ADEK vitamins, TOBI®
D. Azithromycin, airway clearance, low-fat diet
Advances in the Management of Cystic Fibrosis

Updates on CF Mutations and Their Role in Personalized Treatment

Educational Support

Sponsored by the American College of Chest Physicians.

This educational activity is supported by an educational grant from Gilead Sciences, Inc.

This educational activity is supported by an educational grant from Novartis.
The ACCP remains strongly committed to providing the best available evidence-based clinical information to participants of this educational activity and requires an open disclosure of any relevant financial relationships that create a conflict of interest. It is not the intent of the ACCP to disqualify anyone from participating in this educational activity, but to resolve any conflicts of interest that may arise from financial relationships with commercial interests. All conflicts of interest are reviewed by the educational activity course director/chair, the Education Committee, and/or the Conflict of Interest Subcommittee to ensure that such situations are properly evaluated and, if necessary, resolved. The ACCP educational standards pertaining to conflict of interest are intended to maintain the professional autonomy of the clinical experts inherent in promoting a balanced presentation of science. Through our review process, all ACCP CME activities are ensured of independent, objective, scientifically balanced presentations of information. Disclosure of any or no relevant financial relationships will be made available on-site during all educational activities.

Paula Anderson, MD, FCCP
Grant monies (from sources other than industry): Cystic Fibrosis Foundation
Grant monies (from industry related sources): Kalobios, Mpex, Novartis
Learning Objective

• Discuss the latest information on CF mutations and the impact on personalized treatment of the disease

CF Survival Is Improving

- 2011 median survival: 38 years
- 48% of patients are older than 18 years
- Newborn today may live to 5th or 6th decade
- Over 80% of deaths are from respiratory failure
CF Genetics

- One of the most common life-shortening inherited diseases in the US
- Autosomal recessive
- 1 in 30 Caucasians are carriers
- 1 in 3300 live births in Caucasians
- US ~30,000 affected individuals
- Other ethnicities - incidences in US
 - Hispanic: 1:9000
 - African American: 1:15,000
 - Asian: 1:32,000

CF Gene - 1989

The gene responsible for causing CF encodes a protein that functions as:

A. A sodium channel
B. A sialic acid receptor
C. A chloride channel
D. An intracellular chaperone

CFTR Gene
Cystic Fibrosis Transmembrane Conductance Regulator

- Long arm chr 7 (7q31.2)
- Large gene: 189 kilobases, 27 exons
- Transcribed into 6.5 kb mRNA
- Encodes 1480 amino acids

CFTR Protein

- Functions as a chloride channel
- Apical cell membrane
- Regulated by cAMP
- Other functions
 - Down-regulation of Na\(^+\) transport
 - Regulates Ca\(^{2+}\) activated Cl\(^-\) channels and K\(^+\) channels
 - Affects expression of other proteins

CFTR Mutations

- Over 1900 CFTR mutations
- F508del most common
 - Homozygous – 47%
 - Heterozygous – 40%
- Other mutations
 - G542X – 5%
 - G551D – 4%
 - R117H – 3%
 - N1303K – 2.5%
 - 2789+5G>A – 1.3%

Classes of CFTR Mutations

<table>
<thead>
<tr>
<th>Normal</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>No synthesis</td>
<td>Block in processing</td>
<td>Block in regulation</td>
<td>Altered conductance</td>
<td>Reduced synthesis</td>
<td></td>
</tr>
<tr>
<td>GS42X</td>
<td>F508del</td>
<td>G551D</td>
<td>R117H</td>
<td>D1152H</td>
<td>3849+10kbC→T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D1152H</td>
<td></td>
<td>5T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A455E</td>
</tr>
</tbody>
</table>

Patients affected (%)

<table>
<thead>
<tr>
<th>CFTR Activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>CF</td>
</tr>
</tbody>
</table>

Affected Organs

<table>
<thead>
<tr>
<th>Classic Cystic Fibrosis (no functional CFTR protein)</th>
<th>Nonclassic Cystic Fibrosis (some functional CFTR protein, providing survival advantage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic sinusitis</td>
<td>Chronic sinusitis</td>
</tr>
<tr>
<td>Severe chronic bacterial infection of airways</td>
<td>Chronic bacterial infection of airways (later onset, but variable)</td>
</tr>
<tr>
<td>Severe hepatobiliary disease (5–10% of cases)</td>
<td>Adequate pancreatic exocrine function (usually); pancreatitis (5–20% of cases)</td>
</tr>
<tr>
<td>Pancreatic exocrine insufficiency</td>
<td></td>
</tr>
<tr>
<td>Meconium ileus at birth (15–20% of cases)</td>
<td></td>
</tr>
<tr>
<td>Sweat chloride value usually 90–110 mmol/liter; sometimes normal (<40 mmol/liter)</td>
<td>Obstructive azoospermia</td>
</tr>
<tr>
<td>Obstructive azoospermia</td>
<td></td>
</tr>
</tbody>
</table>

CF Pathophysiology

- CFTR gene defect
- Defective ion transport
- Airway surface liquid depletion
- Defective mucociliary clearance
- Mucus obstruction
- Infection
- Inflammation

Bronchiectasis

An 18-year-old Caucasian woman is referred to you for bronchiectasis. She has recurrent bouts of bronchitis, chronic sinusitis and consistently grows *H. influenzae* from sputum cultures. She denies any GI issues and maintains a normal weight. Sweat chloride value is 80 mEq/L and genotyping reveals G551D and R117H. In addition to other treatments, she is started on ivacaftor (Kalydeco®). Based on clinical trials, at her next visit you would expect to see:

- A. The same weight
- B. Improved sweat chloride
- C. Improved lung function
- D. B and C
- E. A and C

Think about your answer for a minute.
Keypad voting is on the next slide.
Based on clinical trials, at her next visit you would expect to see:

A. The same weight
B. Improved sweat chloride
C. Improved lung function
D. B and C
E. A and C

Can We Treat the Underlying Defect?

- **Standard treatments**
 - Airway clearance
 - Mucolytics (rhDNAse)
 - Mucous hydrators (HS)
 - Inhaled antibiotics (tobramycin–TOBI®; aztreonam–Cayston®)
 - Pancreatic enzymes and vitamins
 - Azithromycin
 - Lung transplant

- **Novel approaches**
 - Gene therapy
 - CFTR modulators
CFTR Modulation

- Addresses the underlying genetic defect
- Mutation specific – “personalized medicine”
- CF Foundation developed partnerships with biopharmaceutical industry in 1998 to discover new treatments
 - High throughput screening efforts
 - Discovery of small molecules that affect CFTR processing and function
 - Suppression of premature termination codons
 - Potentiators
 - Correctors

Potentiators and Correctors

Potentiator eg, Ivacaftor

Correctors eg, VX-809

Increased activity of CFTR

Increased quantity of CFTR

VX-770 (Ivacaftor) Phase 2
G551D

Sweat Chloride Concentration (mmol/liter)

Baseline Day 7 Day 14

Placebo
VX-770, 25 mg
VX-770, 75 mg
VX-770, 150 mg

n = 8
n = 8
n = 16
n = 8

Ivacaftor Phase 3

Absolute Change in Percent of Predicted FEV1

Day Wk Wk Wk Wk Wk Wk
15 8 16 24 32 40 48

N=83 N=81 N=80 N=79 N=79 N=77

Ivacaftor

N=76 N=75 N=71 N=71 N=70 N=69 N=68

Placebo

Exacerbation Rate

Weight Gain

Sweat Chloride Levels

![Graph showing Sweat Chloride Levels over time with data points for ivacaftor and placebo.](image)

Safety
Incidence of AEs was similar with ivacaftor and placebo
Serious AEs: ivacaftor, 24%; placebo, 42%

How Much Improvement Is Needed to Make a Clinical Difference?

![Graph showing CFTR Activity with data points for CF, CFTR Related Diseases, and Healthy.](image)
Key Messages

- Cystic fibrosis is a common inherited disease that can present in adulthood
- The genetic defect causes abnormalities in the CFTR protein which functions as a chloride channel in epithelial cells
- Different mutations in the CFTR gene result in a variable effect on CFTR protein processing and functioning
- There are exciting new treatments available or in development that are specific for different types of CFTR mutations
 - We are entering an era of personalized medicine for CF
The gene responsible for causing CF encodes a protein that functions as:

A. A sodium channel
B. A sialic acid receptor
C. A chloride channel
D. An intracellular chaperone

Question

An 18-year-old Caucasian woman is referred to you for bronchiectasis. She has recurrent bouts of bronchitis, chronic sinusitis and consistently grows *H. influenzae* from sputum cultures. She denies any GI issues and maintains a normal weight. Sweat chloride value is 80 mEq/L and genotyping reveals G551D and R117H. In addition to other treatments, she is started on ivacaftor (Kalydeco®). Based on clinical trials, at her next visit you would expect to see:

A. The same weight
B. Improved sweat chloride
C. Improved lung function
D. B and C
E. A and C
Based on clinical trials, at her next visit you would expect to see:

A. The same weight
B. Improved sweat chloride
C. Improved lung function
D. B and C
E. A and C

Now key in your response

MORNING EDUCATIONAL SYMPOSIUM

Current and Emerging Cystic Fibrosis Treatments
Educational Support

Sponsored by the American College of Chest Physicians.

This educational activity is supported by an educational grant from Gilead Sciences, Inc.

This educational activity is supported by an educational grant from Novartis.

Speaker

Rubin I. Cohen, MD, FACP, FCCP, FCCM
Adult CF and Bronchiectasis Center
Beth Thalheim Asthma Center

Hofstra North Shore-LIJ School of Medicine
Manhasset, New York
Faculty Disclosure

The ACCP remains strongly committed to providing the best available evidence-based clinical information to participants of this educational activity and requires an open disclosure of any relevant financial relationships that create a conflict of interest. It is not the intent of the ACCP to disqualify anyone from participating in this educational activity, but to resolve any conflicts of interest that may arise from financial relationships with commercial interests. All conflicts of interest are reviewed by the educational activity course director/chair, the Education Committee, and/or the Conflict of Interest Subcommittee to ensure that such situations are properly evaluated and, if necessary, resolved. The ACCP educational standards pertaining to conflict of interest are intended to maintain the professional autonomy of the clinical experts inherent in promoting a balanced presentation of science. Through our review process, all ACCP CME activities are ensured of independent, objective, scientifically balanced presentations of information. Disclosure of any or no relevant financial relationships will be made available on-site during all educational activities.

Rubin Cohen, MD, FACP, FCCP, FCCM
Principal Investigator: ALA-ACRC, CFFT TDN
Grant monies: CFF
Consultant fee, speaker bureau, advisory committee, etc: Gilead

Learning Objective

• Describe the safety and efficacy of currently available and emerging CF treatments
Survival Increased Over the Years

Davis PB. Am J RespirCrit Care Med. 2006;173:475-482.

Epidemiology: CF Patients Lose an Average of 1.7% FEV₁ Lung Function Per Year

Which of the following agents has **NOT** been shown to be effective in CF?

A. Hypertonic Saline
B. Acetylcysteine (Mucomyst)
C. Recombinant Human DNase (Pulmozyme)
D. Dry Powder Mannitol

Evolution of CF Treatment

- **< 1980s**
 - Physical methods; medications
 - Antipseudomonal antibiotics

- **1980s**
 - Antipseudomonal antibiotics

- **1990s**
 - Inhaled antibiotics
 - Gene therapy
 - rhDNase
 - Double lung transplant

- **≥ 2000**
 - Antibiotics, HS, Azithro, channel modulators, small molecules
Recombinant Human DNase or dornase-alfa: Pulmozyme®

Safety: voice alteration, laryngitis; rarely severe; resolved within 21 days of onset

rhDNase Increases the Pourability of Cystic Fibrosis Sputum

Shak S. PNAS. 1990;87:9188-9192.
Hypertonic Saline (HS)

• *In-vitro* data further suggested that sustained hydration of airway surfaces was the factor that caused the improved mucociliary clearance

Dry Powder Inhaled Mannitol

- Treated group had a mean improvement in FEV₁ of 105 ml (8.2% above baseline)
- The treated group (400 mg inhaled mannitol, twice daily) had a relative improvement in FEV₁ of 3.75% ($P = 0.029$) vs. control (50 mg)
- There were fewer exacerbations in the treated group (not significant), but exacerbation rates were low
- Conclusions: Inhaled mannitol, 400 mg twice a day, resulted in improved lung function over 26 weeks, which was sustained after an additional 26 weeks in the extension open-label phase

Dry Powder Mannitol

- Uncertainty over safety and efficacy data: FDA advisory panel unanimously recommend against approval of dry powder formulation of mannitol in CF
- Issue eliciting most concern was higher rate of hemoptysis treatment group, particularly in children
- In two studies, rate of hemoptysis (not associated with an exacerbation), was almost 11% in adults on DPM, compared with about 8% of controls
- BUT in those aged 6-17 years, rate was almost 8% among those on DPM, compared with almost 2% among controls
- Tolerability with more patients on DPM stopping treatment because of adverse events (11% vs. 6%)
- Approved for age over 6 years in Australia and in adults in the EU

Other Mucolytics

- There are no well-validated alternative mucolytic agents available at this time
Anti-Inflammatory Agents

Macrolides

- The precise mechanisms of action of macrolides are unclear
- Azithromycin reduces virulence factor production, decreases biofilm production, and has bactericidal effects on *P. aeruginosa* when it is growing in its stationary (biofilm) phase, interferes with colony signaling (so-called quorum sensing)
- Macrolides affect cytokine production by many cell types and alter polymorphonuclear cell function, making them effective anti-inflammatory agents

Corticosteroids in CF (correct statement):

A. Should not be used systemically due to their side effect profile
B. Inhaled corticosteroids are effective without the side effects of systemic therapy
C. Systemic corticosteroids in CF may be effective as short-term therapy
D. The role of corticosteroids in CF remains unclear as a randomized trial has not yet been conducted
Corticosteroids

- Promising initial results led to a large multicenter randomized trial comparing alternate-day therapy with prednisone at 2 mg/kg and 1 mg/kg to placebo
- Enrolled only children and adolescents with CF
- The higher dose group was discontinued because of an unexpectedly high incidence of cataracts, glucose intolerance, and growth retardation
- The 1 mg/kg and placebo groups continued to the end of the 4-year trial
- The steroid-treated group showed benefit with respect to pulmonary function, particularly the subset of patients chronically infected with *Pseudomonas*

BUT...

In summary: Corticosteroids have a beneficial effect but at significant cost.
Long-term oral corticosteroid therapy, even in an alternate-day regimen, should be avoided if at all possible.
These studies do suggest that anti-inflammatory agents work.

Inhaled Corticosteroids

- A multicenter, randomized, controlled trial of ICS withdrawal concluded that it is safe to consider stopping ICS in CF thereby reducing drug burden and possible adverse effects

Ibuprofen

- High-dose oral ibuprofen studied in two large, long-term, placebo-controlled trials
- In a single-centre study, Konstan and colleagues showed a decrease in the rate of loss of lung function over 4 years after ibuprofen treatment compared with placebo. Largest benefit seen in younger patients (5–13 years)
- Multicentre Canadian trial enrolled 6–18 years of age with mild lung disease. There was no significant effect of ibuprofen on the primary endpoint, FEV₁, compared with placebo
- BUT, ibuprofen-treated group spent fewer days in the hospital than patients in the placebo group (1·8 days vs. 4·1 days per year)

Ibuprofen

- No significant adverse events were reported in either of these studies
- However, a retrospective report from another institution showed that many patients treated with high-dose ibuprofen discontinued treatment, often because of GI side effects
- Ibuprofen treatment, if used, seems most beneficial when started before the development of severe inflammation and pathological changes in the lung

Ion Channel Modulators
ΔF508 CFTR
Too Little at the Right Place

Clinical Evaluation of VX-809 and Ivacaftor Combination: Cohort 2 Study Design

Change in Absolute FEV₁ % Predicted in F508del Homozygous Patients

- Placebo
- VX-809 200mg + ivacaftor 250mg
- VX-809 400mg + ivacaftor 250mg
- VX-809 600mg + ivacaftor 250mg

* P<0.05 within group
** P<0.001 within group
† P<0.05 vs placebo
‡ P<0.001 vs placebo

Change in Absolute FEV₁ % Predicted in Patients Heterozygous for F508del

- Monotherapy
- Combination
- VX-809 600mg + ivacaftor 250mg
- Placebo

-1.3
-3.7

* P<0.05 within group

Small Molecules in CF Therapy
CLASS I

- **Class I** includes premature termination codons (PTCs) or nonsense codons
- Nonsense mutation: single point alteration in DNA resulting in **inappropriate presence** of UAA, UAG, or UGA **STOP CODON** in the protein coding region of messenger RNA (mRNA) transcript
- Such a stop codon causes **premature cessation** of translation, with protein truncation leading to loss of function and consequent disease
- Nonsense mutations are responsible for 11% of CF cases worldwide
- In Israel, nonsense mutations are the #1 cause of CF
- Nonsense mutations produce little functional CFTR, these patients have severe CF

Ataluren Mechanism of Action

1. **Normal Translation**
 - Normal stop signal
 - Functioning Protein

2. **Incomplete Translation**
 - Premature stop signal
 - Incomplete Protein

3. **Ataluren-Facilitated Translation**
 - Ataluren-facilitated translation of premature stop signal
 - Ataluren-Facilitated Functioning Protein
The Phase 3 Trial
Ataluren vs. Placebo

- FEV$_1$ 40 to 90% predicted
- 48 weeks
- Primary endpoint: improvement in FEV$_1$ % predicted from baseline
- Secondary: pulmonary exacerbations
- Tertiary: nasal potential difference
- 238 subjects randomized, intent to treat
 - 116 ataluren (10, 10, 20 mg/kg; morning, midday, evening doses)
 - 116 placebo (TID)

Results

- No significant changes vs. placebo in any parameters measured
- FEV$_1$ % predicted -2.5% ataluren; -5.5% placebo ($P = 0.124$)
- Among the *a priori* stratifications: the interaction of treatment with chronic inhaled antibiotic was significant
- In those *not* being treated with chronic nebulized antibiotics, FEV$_1$ % predicted was 6.7% in favor of ataluren
- Safety: pulmonary exacerbation, cough, upper respiratory tract infections similar frequencies for ataluren and placebo groups

Key Messages

• Improved understanding of CF pathophysiology has increased survival

• Treatment protocols thus far are geared toward treating consequences of the disease (mucus, infection, inflammation)

• For the first time, we have potential therapy that may treat the underlying protein defect

Which of the following agents has NOT been shown to be effective in CF?

A. Hypertonic Saline
B. Acetylcysteine (Mucomyst)
C. Recombinant Human DNase (Pulmozyme)
D. Dry Powder Mannitol
Corticosteroids in CF (correct statement):

A. Should not be used systemically due to their side effect profile
B. Inhaled corticosteroids are effective without the side effects of systemic therapy
C. Systemic corticosteroids in CF may be effective as short-term therapy
D. The role of corticosteroids in CF remains unclear as a randomized trial has not yet been conducted

Advances in the Management of Cystic Fibrosis

Improving the Prevention and Treatment of Early and Chronic Airway Infections
Educational Support

Sponsored by the American College of Chest Physicians.

This educational activity is supported by an educational grant from Gilead Sciences, Inc.

This educational activity is supported by an educational grant from Novartis.

Speaker

Susanna A. McColley, MD, FCCP
Anne & Robert H. Lurie Children’s Hospital of Chicago
Northwestern University Feinberg School of Medicine
Chicago, Illinois
Faculty Disclosure

The ACCP remains strongly committed to providing the best available evidence-based clinical information to participants of this educational activity and requires an open disclosure of any relevant financial relationships that create a conflict of interest. It is not the intent of the ACCP to disqualify anyone from participating in this educational activity, but to resolve any conflicts of interest that may arise from financial relationships with commercial interests. All conflicts of interest are reviewed by the educational activity course director/chair, the Education Committee, and/or the Conflict of Interest Subcommittee to ensure that such situations are properly evaluated and, if necessary, resolved. The ACCP educational standards pertaining to conflict of interest are intended to maintain the professional autonomy of the clinical experts inherent in promoting a balanced presentation of science. Through our review process, all ACCP CME activities are ensured of independent, objective, scientifically balanced presentations of information. Disclosure of any or no relevant financial relationships will be made available on-site during all educational activities.

Susanna A. McColley, MD, FCCP
Grant monies: Cystic Fibrosis Foundation; National Heart, Lung, and Blood Institute; Agency for Healthcare Research and Quality
Consultant fee, speaker bureau, advisory committee, etc: American Board of Pediatrics; American Academy of Pediatrics; Vertex Pharmaceuticals

Learning Objective

- Identify strategies to improve the prevention and treatment of early and chronic airway infections
Based on improvements in FEV₁ and sputum Pseudomonas aeruginosa density demonstrated in clinical trials, which of the following would be a reasonable treatment choice for an 18-year-old patient with CF and chronic P. aeruginosa infection?

A. Aztreonam lysine for inhalation
B. Tobramycin inhalation solution
C. Tobramycin inhalation powder
D. All of the above
E. A and B

Improving the Prevention and Treatment of Early and Chronic Airway Infections

- Why inhaled antibiotics?
 - Rationale and review
- *P. aeruginosa* eradication
 - Why and how
- Available therapies: what for whom?
 - Tobramycin inhalation solution
 - Tobramycin inhalation powder
 - Aztreonam lysine
- Unanswered questions
Chronic airway infection with *Pseudomonas aeruginosa* is common and is associated with worse clinical outcomes.

Mucoidy Is Associated With Chronic Infection and Lung Function Decline

Forced Expiratory Volume in 1 Second

![Graph showing Forced Expiratory Volume in 1 Second](image)

Suppressing P. aeruginosa Improves FEV_1

![Graph showing change in FEV1](image)

This is associated with decreased PA bacterial sputum density

Tobramycin Solution for Inhalation
Chronic Airway Infection

Patient Survival

<table>
<thead>
<tr>
<th></th>
<th>Mortality rate without TSI</th>
<th>Mortality rate with TSI</th>
<th>Increase in the predicted % of patients surviving</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 years</td>
<td>2.1%</td>
<td>1.3%</td>
<td>0.8%</td>
</tr>
<tr>
<td>5 years</td>
<td>8%</td>
<td>5.2%</td>
<td>2.8%</td>
</tr>
<tr>
<td>10 years</td>
<td>15%</td>
<td>9.9%</td>
<td>5.1%</td>
</tr>
</tbody>
</table>

TSI use was associated with a 21% reduction in the odds of subsequent year mortality (P < 0.001)

AZLI for Chronic Airway Infection

AIR-CF-1 Clinical Trial

Change in FEV₁ (% of Predicted Value) from Baseline

Treatment difference on day 28 = 10.3 %

AZLI for Chronic Airway Infection

AIR-CF-1 Clinical Trial

Change in CFQ-R Respiratory Score from Baseline

![Graph showing change in CFQ-R Respiratory Score from Baseline](image)

- Treatment difference on day 28 = 9.7 points

Tobramycin Inhalation Powder:

EAGER Trial

- No difference in FEV₁ or PA sputum density
- Patients preferred TIP

![Graph showing FEV₁ % Predicted Mean Relative Change from Baseline and Mean Change of Log CFUs](image)

TSI versus AZLI

• Assael et al: Inhaled aztreonam lysine vs. inhaled tobramycin in cystic fibrosis: comparative efficacy trial
• Result
 – AZLI superior
 – However, most enrollees were on long term TSI prior to randomization

Summary of Suppression Data

• Suppression of chronic *Pseudomonas aeruginosa* infection is associated with improved pulmonary function, quality of life, and survival
• Best approach remains to be defined
 – Close monitoring of effectiveness in individual patients is essential
Treating an asymptomatic CF patient with first isolation of *Pseudomonas aeruginosa* is likely to:

A. Have no clinical benefit
B. Be most successful in eradicating *P. aeruginosa* if tobramycin inhalation solution is combined with oral ciprofloxacin
C. Delay chronic infection
D. Cause intolerable side effects

Eradication of *P aeruginosa*:

![Graph showing eradication rates over months of observation.](image)

Historical Data

ELITE Study Design

Treatment Group 1
- Routine Clinic Visit
- 28 days TSI
- Follow-up period

Treatment Group 2
- Routine Clinic Visit
- 28 days TSI
- 28 days TSI
- Follow-up period

Median Time to Recurrence of *P. aeruginosa* Infection (Any Samples)

ELITE: Short Term Efficacy

Proportion of Patients Free of P. aeruginosa (%)

Day 28

- 28-day TSI
- 56-day TSI

1 Month after End of Treatment

- n = 42
- n = 42
- n = 41
- n = 36

Proportions at 28 days and 1 month after end of treatment, showing the percentage of patients free of P. aeruginosa.

EPIC Study Design
(at first Pseudomonas detection)

- Solid blocks – chronic intermittent treatment
- Striped blocks – treatment only when culture positive

TIS + cipro

TIS + placebo

Visit schedule:
- Visit 1: 0, 3, 6, 9, 12, 15, 18 months
- Visit 2: 1, 2, 3, 4, 5, 6, 7, 8 visits

Study design with treatment regimens and visit schedule.
EPIC Study: Results

Cycled Therapy
- Proportion Exacerbation Free
- HR, 0.95; 95% CI, 0.54-1.66
- \(P = 0.86 \)

Culture-based Therapy
- Proportion Exacerbation Free
- HR, 1.45; 95% CI, 0.82-2.54
- \(P = 0.20 \)

Week

<table>
<thead>
<tr>
<th>Week</th>
<th>Proportion Exacerbation Free</th>
<th>Cycled Therapy</th>
<th>Culture-based Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>22</td>
<td>0.8</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>34</td>
<td>0.7</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>58</td>
<td>0.6</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>70</td>
<td>0.5</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>82</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Number at Risk
- **Cycled**
 - 152
 - 145
 - 137
 - 134
 - 127
 - 115
 - 77
 - 2
- **Culture-based**
 - 152
 - 150
 - 143
 - 134
 - 130
 - 123
 - 68
 - 0

TIS and Cipro
- Proportion Exacerbation Free
- HR, 0.95; 95% CI, 0.54-1.66
- \(P = 0.86 \)

TIS and Placebo
- Proportion Exacerbation Free
- HR, 1.45; 95% CI, 0.82-2.54
- \(P = 0.20 \)

Week

<table>
<thead>
<tr>
<th>Week</th>
<th>Proportion Exacerbation Free</th>
<th>TIS and Cipro</th>
<th>TIS and Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>22</td>
<td>0.8</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>34</td>
<td>0.7</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>58</td>
<td>0.6</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>70</td>
<td>0.5</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>82</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Number at Risk
- **TIS and Cipro**
 - 152
 - 147
 - 139
 - 131
 - 125
 - 113
 - 69
 - 2
- **TIS and Placebo**
 - 152
 - 148
 - 141
 - 137
 - 132
 - 125
 - 76
 - 0

ALPINE Study

• Open-Label Phase 2 Trial to Evaluate the Safety and Efficacy of Aztreonam for Inhalation Solution (AZLI) in Pediatric Patients With CF and New Onset Lower Respiratory Tract Culture Positive for Pseudomonas Aeruginosa

• CF patients age 3 mos to < 18 years and newly detected PA pulmonary colonization/infection

• Primary outcome: proportion of patients with PA-negative cultures at all time points during a 6-month monitoring period (after cessation of AZLI) treatment; cultures at baseline, days 28 (end of AZLI treatment), 56, 112, 196

• Trial completed; analysis under way

Summary of Eradication Data

• A single month of inhaled tobramycin inhalation solution, 300 mg BID, works as well as a longer course or cycled therapy in the setting of a negative culture

• Other antibiotic approaches may be helpful; awaiting ALPINE results
Unanswered Questions

- Should continuous, alternating inhaled antibiotics be used for patients with chronic PA infection?
- What is the best approach for patients who “fail” initial PA eradication?
- What about other CF-related organisms?

AZLI
Alternating With Tobramycin/Fosfomycin

Alternating Antibiotic Therapy for Chronic Airway Infection

• Study design
 – Continuous, alternating antibiotic therapy
 – Prospective, observational, cohort study
 – N = 30
 – Treatment groups
 ➢ AZLI every other month
 ➢ TSI every other month
 ➢ AZLI and TSI alternating months
 – Study endpoints – antibiotic resistance profiles, microbial response, pulmonary function, CFQ-R respiratory symptoms

Artimino Algorithm for Antibiotic Eradication Therapy (ECFS)

1° Non-clearance Still +ve

2° attempt AET Optimize adjunctive therapy

2° non-clearance Still +ve

Aggressive 3° line clearance Optimize adjunctive therapy

Still +ve Consider chronic suppression

1°/Early +ve PA AET

2° Clearance -ve after AET

3° Clearance -ve after AET

Surveillance Minimum: 1-2 weeks after cessation of AET and quarterly thereafter

Persistence/Recurrence +ve culture after prior -ve

Either 1st Line AET or 2nd Line AET

Other Organisms Associated With Increased Mortality

- Historically, most “feared” CF infection is *Burkholderia cepacia* complex
- *Mycobacterium abscessus* associated with more rapid decline of lung function
- Risk-adjusted mortality rate for CF patients with MRSA: 27.7:1000 vs. 18.3:1000 in patients without MRSA
- Reports of epidemic strains/severe disease with a number of organisms including *Achromobacter xylosoxidans* and *Pandoraea apista*
- Approaches to therapy are not yet defined

Aerosolized Antibiotic Development Pipeline

<table>
<thead>
<tr>
<th>Preclinical</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
<th>Clinically available to patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobramycin (TSI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aztreonam (AZLI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tobramycin (TIP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levofloxacin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liposomal Amikacin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vancomycin DPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Messages

• Chronic airway infection with *Pseudomonas aeruginosa* is an important clinical problem in children and adults with CF
• Suppression of chronic PA has clear benefits; several treatment options are available
• Eradication of new PA is an accepted and widely used strategy; optimal strategy is still evolving

Based on improvements in FEV$_1$ and sputum *Pseudomonas aeruginosa* density demonstrated in clinical trials, which of the following would be a reasonable treatment choice for an 18-year-old patient with CF and chronic *P. aeruginosa* infection?

A. Aztreonam lysine for inhalation
B. Tobramycin inhalation solution
C. Tobramycin inhalation powder
D. All of the above
E. A and B
Treating an asymptomatic CF patient with first isolation of *Pseudomonas aeruginosa* is likely to:

A. Have no clinical benefit
B. Be most successful in eradicating *P. aeruginosa* if tobramycin inhalation solution is combined with oral ciprofloxacin
C. Delay chronic infection
D. Cause intolerable side effects

25% 25% 25% 25%

Bibliography

• Review articles
Bibliography

B. cepacia complex

BCC and lung transplantation

S. maltophilia

Bibliography

• A. xylosoxidans

• Anaerobes

• Streptococci

• Pandoraea
Bibliography

• Inquilinus

• Ralstonia

• Mycobacteria

• Aspergillus
Bibliography

- Viruses

Advances in the Management of Cystic Fibrosis

Case:
29-year-old
Caucasian Male
Case: 29-Year-Old Caucasian Male

History

- Recurrent heat exhaustion since age 8–9
- IDDM diagnosed at age 22
- Frequent bronchitis; takes antibiotics every few months
- Pneumonia 2 years ago
- ¼ c brown sputum daily
- Salty powder on skin after sweating
- Found to be infertile 1 year ago; absent vas deferens
- Internet search—could this be CF?
- Requested testing for CF from local PCP
- Sweat chloride 70 mEq/L
- Genotyping: G551D; 2789+5G→A
- Parental genotyping confirms 1 mutation from each
- 1 stool daily (bulky, foul-smelling)
- Patient has maintained weight and denies sinus problems

Case: 29 Year-Old Caucasian Male

- Physical
 - Well appearing man; BMI 30
 - Significant only for purulent rhinorhea and swollen turbinates
 - Lungs clear; No clubbing
- Testing
 - Spirometry: mild obstruction; FVC 82% predicted; FEV₁ 72% predicted; FEV₁/FVC ratio 71%
 - CXR: fibronodular changes in both upper lobes
 - Sputum culture: Mycobacterium avium-intracellulare, Aspergillus, sensitive S. aureus
 - Labs: BMP normal, but glucose 260 mg/dL; HgbA1C 9.8; LFT normal; vitamins A, D, E low; INR 1.1; IgE 22
This clinical presentation and genotyping is consistent with a diagnosis of:

A. Chronic bronchitis
B. CFTR related metabolic syndrome
C. Nonclassic cystic fibrosis
D. Allergic bronchopulmonary aspergillosis

Indicated therapies for this patient would include:

A. rhDNAse (Pulmozyme®), airway clearance, TOBI®
B. rhDNAse (Pulmozyme®), Ivacaftor (Kalydeco®), airway clearance
C. Pancreatic enzymes, ADEK vitamins, TOBI®
D. Azithromycin, airway clearance, low-fat diet
Case Follow-up

• **Treatment Approach**
 - Airway clearance with the Vest
 - Inhaled rhDNase (Pulmozyme®) and albuterol
 - Low dose of pancreatic enzyme replacement and ADEK vitamins
 - Prescribed ivacaftor (Kalydeco®)

• **Follow-up Clinic Visit**
 - Feeling much better
 - Minimal cough and sputum
 - No abdominal symptoms
 - No salt collecting on his skin
 - Repeat spirometry
 - FVC 84% predicted
 - FEV1 85%
 - FEV1/FVC ratio 77%
 - Endocrinology will assist with optimization of glucose control