Poor lung function as child tied to ACOS

BY KATIE WAGNER
Frontline Medical News

Children with poor lung function will be more likely to develop asthma-chronic obstructive pulmonary disease (COPD) overlap syndrome (ACOS), suggesting that prevention of this disease should be attempted in early life, a study shows.

While other research has found that patients with poor lung function in early life have poor lung function as adults, this was the first study to investigate the relationship between childhood lung function and ACOS in adult life, according to Dinh S. Bui of the University of Melbourne, and his colleagues.

The study, published in the American Journal of Respiratory and Critical Care Medicine, used multinomial regression models to investigate associations between childhood lung parameters at age 7 years and asthma, COPD, and ACOS at age 45 years (Am J Respir Crit Care Med. 2017 Feb 1. doi: 10.1164/rcmm.201606-1272OC).

“We found that ACOS participants showed evidence of persistently lower FEV1 [forced expiratory volume in 1 second] and FEV1/FVC [forced vital capacity] from childhood. This suggests that poorer childhood lung function tracked to early adult life, leading to impaired max....”

Pulmonary embolism common in patients with AE-COPD

BY JIM KLING
Frontline Medical News

About 16% of patients with unexplained chronic obstructive pulmonary disease acute exacerbations (AE-COPD) had an accompanying pulmonary embolism (PE), usually in regions that could be targeted with anticoagulants, according to a new systematic review and meta-analysis.

About 70% of the time an AE is a response to infection, but about 30% of the time, an AE has no clear cause, the authors said in a report on their research (CHEST. 2017 Mar;151[3]:544-54). There is a known biological link between inflammation and coagulation, which suggests that patients experiencing AE-COPD may be at increased risk of PE.

The researchers reviewed and analyzed seven studies, comprising 880 patients.

HELP PRESERVE MORE LUNG FUNCTION
Reduce lung function decline with Esbriet

Indication
Esbriet® (pirfenidone) is indicated for the treatment of idiopathic pulmonary fibrosis (IPF).

Select Important Safety Information
Elevated liver enzymes: Increases in ALT and AST >3× ULN have been reported in patients treated with Esbriet. Rarely these have been associated with concomitant elevations in bilirubin. Patients treated with Esbriet had a higher incidence of elevations in ALT or AST than placebo patients (3.7% vs 0.8%, respectively). No cases of liver transplant or death due to liver failure that were related to Esbriet have been reported. However, the combination of transaminase elevations and elevated bilirubin without evidence of obstruction is generally recognized as an important predictor of severe liver injury that could lead to death or the need for liver transplants in some patients. Conduct liver function tests (ALT, AST, and bilirubin) prior to initiating Esbriet, then monthly for the first 6 months and every 3 months thereafter. Dosage modifications or interruption may be necessary.

DEMONSTRATED EFFICACY*
- Esbriet had a significant impact on lung function vs placebo in ASCEND2,3
 - 48% relative reduction in risk of a meaningful decline in lung function (≥10% decline in %FVC) at 52 weeks for patients on Esbriet vs placebo (17% vs 32%; 15% absolute difference; P<0.001)
 - 2.3x as many patients on Esbriet maintained their baseline function at 52 weeks vs placebo (23% vs 10% of patients; 13% absolute difference; P<0.001)
- Esbriet delayed progression of IPF vs placebo through a sustained impact on lung function decline in ASCEND2,3
- No statistically significant difference vs placebo in change in %FVC or decline in FVC volume from baseline to 72 weeks was observed in CAPACITY 0062,4
- Safety and efficacy were evaluated in three phase 3, double-blind, placebo-controlled, multicenter trials in 1247 patients randomized to receive Esbriet (n=623) or placebo (n=624)2

- The recommended daily dosage is 3 capsules, 3 times a day (2403 mg/day) with food, titrated to full dosage over a 14-day period2
- Flexible dosing for appropriate modification to help manage potential adverse reactions (patients may require dose reduction, interruption, or discontinuation)2
 — eg, elevated liver enzymes, gastrointestinal events, and photosensitivity reactions or rash

ESTABLISHED MANAGEMENT PLAN
- Esbriet Access Solutions offers a full range of access and reimbursement support for your patients and practice
- The Esbriet Inspiration Program™ motivates patients to stay on treatment with information and encouragement
- Clinical Coordinators are available to provide education to patients with IPF through in-office programs

COMMITTED TO PATIENTS
- Esbriet has been approved outside the US since 20111
- More than 27,000 patients have taken pirfenidone worldwide1

WORLDWIDE PATIENT EXPERIENCE
- The efficacy of Esbriet was evaluated in three phase 3, randomized, double-blind, placebo-controlled, multicenter trials. In ASCEND, 555 patients with IPF were randomized to receive Esbriet 2403 mg/day or placebo for 52 weeks. Eligible patients had %FVC between 53%-90% and %DLco between 30%-90%. The primary endpoint was change in %FVC from baseline to week 52. In CAPACITY 006, 344 patients with IPF were randomized to receive Esbriet 2403 mg/day or placebo. Eligible patients had %FVC ≥50% and %DLco ≥35%. The primary endpoint was change in %FVC from baseline to week 72.

- Recognize that different choices will be appropriate for individual patients and that you must help each patient arrive at a management decision consistent with his or her values and preferences.

Genentech
A Member of the Roche Group
© 2016 Genentech USA, Inc. All rights reserved. ESB/021215/0039(1a)(1) 04/16

ATS=American Thoracic Society; ERS=European Respiratory Society; JRS=Japanese Respiratory Society; ALAT=Latin American Thoracic Association; %FVC=percent predicted forced vital capacity.

*The efficacy of Esbriet was evaluated in three phase 3, randomized, double-blind, placebo-controlled, multicenter trials. In ASCEND, 555 patients with IPF were randomized to receive Esbriet 2403 mg/day or placebo for 52 weeks. Eligible patients had %FVC between 53%-90% and %DLco between 30%-90%. The primary endpoint was change in %FVC from baseline to week 52. In CAPACITY 006, 344 patients with IPF were randomized to receive Esbriet 2403 mg/day or placebo. Eligible patients had %FVC ≥50% and %DLco ≥35%. The primary endpoint was change in %FVC from baseline to week 72.
†Recognize that different choices will be appropriate for individual patients and that you must help each patient arrive at a management decision consistent with his or her values and preferences.
Photosensitivity reaction or rash: Patients treated with Esbriet had a higher incidence of photosensitivity reactions (9%) compared with patients treated with placebo (1%). Patients should avoid or minimize exposure to sunlight (including sunlamps), use a sunblock (SPF 50 or higher), and wear clothing that protects against sun exposure. Patients should avoid concomitant medications that cause photosensitivity. Dosage reduction or discontinuation may be necessary.

Gastrointestinal disorders: Gastrointestinal events of nausea, diarrhea, dyspepsia, vomiting, gastroesophageal reflux disease, and abdominal pain were more frequently reported in patients treated with Esbriet. Dosage reduction or interruption for gastrointestinal events was required in 18.6% of patients in the Esbriet 2403 mg/day group, as compared to 5.8% of patients in the placebo group; 2.2% of patients in the Esbriet 2403 mg/day group discontinued treatment due to a gastrointestinal event, as compared to 1.0% in the placebo group. The most common (>2%) gastrointestinal events that led to dosage reduction or interruption were nausea, diarrhea, vomiting, and dyspepsia. Dosage modifications may be necessary in some cases.

Adverse reactions: The most common adverse reactions (>10%) were nausea, rash, abdominal pain, upper respiratory tract infection, diarrhea, fatigue, headache, dyspepsia, dizziness, vomiting, anorexia, gastroesophageal reflux disease, sinusitis, insomnia, weight decreased, and arthralgia.

Drug interactions: Concomitant administration with strong inhibitors of CYP1A2 (eg, fluvoxamine) significantly increases systemic exposure of Esbriet and is not recommended. Discontinue prior to administration of Esbriet. If strong CYP1A2 inhibitors cannot be avoided, dosage reductions of Esbriet are recommended. Monitor for adverse reactions and consider discontinuation of Esbriet as needed. Concomitant administration of Esbriet and ciprofloxacin (a moderate inhibitor of CYP1A2) moderately increases exposure to Esbriet. If ciprofloxacin at the dosage of 750 mg twice daily cannot be avoided, dosage reductions are recommended. Monitor patients closely when ciprofloxacin is used.

Agents that are moderate or strong inhibitors of both CYP1A2 and CYP isoenzymes involved in the metabolism of Esbriet should be avoided during treatment. The concomitant use of a CYP1A2 inducer may decrease the exposure of Esbriet, and may lead to loss of efficacy. Concomitant use of strong CYP1A2 inducers should be avoided.

Specific populations: Esbriet should be used with caution in patients with mild to moderate (Child-Pugh Class A and B) hepatic impairment. Monitor for adverse reactions and consider dosage modification or discontinuation of Esbriet as needed. The safety, efficacy, and pharmacokinetics of Esbriet have not been studied in patients with severe hepatic impairment. Esbriet is not recommended for use in patients with severe (Child-Pugh Class C) hepatic impairment.

Esbriet should be used with caution in patients with mild (CLcr > 50-80 mL/min), moderate (CLcr 30-50 mL/min), or severe (CLcr less than 30 mL/min) renal impairment. Monitor for adverse reactions and consider dosage modification or discontinuation of Esbriet as needed. The safety, efficacy, and pharmacokinetics of Esbriet have not been studied in patients with end-stage renal disease requiring dialysis. Use of Esbriet in patients with end-stage renal disease requiring dialysis is not recommended.

Smoking causes decreased exposure to Esbriet, which may alter the efficacy profile of Esbriet. Instruct patients to stop smoking prior to treatment with Esbriet and to avoid smoking when using Esbriet.

You may report side effects to the FDA at 1-800-FDA-1088 or www.fda.gov/medwatch. You may also report side effects to Genentech at 1-888-835-2555.

Please see Brief Summary of Prescribing Information on adjacent pages for additional Important Safety Information.

References:
Low FEV₁ nearly triples ACOS risk

ACOS from page 1

imarily attained lung function,” the researchers said.

“The study highlights that low childhood lung function is a risk factor for COPD (and ACOS) independent of smoking,” they noted.

The 1,353 study participants who had postbronchodilator (post-BD) lung function available were categorized into the following four mutually exclusive groups at age 45 years based on their asthma and COPD status: having neither asthma nor COPD (unaffected) (n = 999); having asthma alone (n = 269); having COPD alone (n = 39); having ACOS (n = 68).

Once adjusted for the sampling weights, the prevalence of current asthma alone was 13.5%, COPD alone was 4.1%, and ACOS was 2.9%. The researchers defined COPD at age 45 years as post-BD FEV₁/FVC less than the Global Lung Initiative lower limit of normal. Because the associations between childhood lung function and both ACOS and COPD alone were not linear, the patients were grouped into quartiles based on their character-

Table 2. Adverse Reactions Occurring in ≥10% of ESBRIET-Treated Patients and More Commonly Than Placebo in Studies 1, 2, and 3

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>% of Patients (0 to 118 Weeks)</th>
<th>ESBRIET 2403 mg/day (N = 623)</th>
<th>Placebo (N = 624)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>36%</td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td>Rash</td>
<td>30%</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Abdominal Pain</td>
<td>24%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Upper Respiratory Tract Infection</td>
<td>27%</td>
<td>25%</td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>26%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Fatigue</td>
<td>26%</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>22%</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>Dyspepsia</td>
<td>19%</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>Dizziness</td>
<td>18%</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>Vomiting</td>
<td>13%</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>Anorexia</td>
<td>13%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Gastro-esophageal Reflux Disease</td>
<td>11%</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>Sinusitis</td>
<td>11%</td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Insomnia</td>
<td>10%</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>Weight Decreased</td>
<td>10%</td>
<td>5%</td>
<td></td>
</tr>
<tr>
<td>Arthralgia</td>
<td>10%</td>
<td>7%</td>
<td></td>
</tr>
</tbody>
</table>

*Includes abdominal pain, upper abdominal pain, abdominal distension, and stomach discomfort.

Adverse reactions occurring in ≤5 to ≤10% of ESBRIET-treated patients and more commonly than placebo were photosensitivity reaction (9% vs. 1%), decreased appetite (8% vs. 3%), pruritus (8% vs. 5%), asthma (8% vs. 4%), diaphoresis (8% vs. 2%), and non-cardiac chest pain (5% vs. 4%).
The concomitant use of ESBRIET and a CYP1A2 inducer may decrease exposure to ESBRIET (see Clinical Pharmacology section 12.3 in full Prescribing Information) and to avoid smoking when using ESBRIET.

8.8 Smokers

Smoking causes decreased exposure to ESBRIET (see Clinical Pharmacology section 12.3 in full Prescribing Information) which may alter the efficacy profile of ESBRIET. Instruct patients to stop smoking prior to treatment with ESBRIET and to avoid smoking when using ESBRIET.

10 OVERDOSAGE

There is limited clinical experience with overdose. Multiple doses of ESBRIET up to a maximum tolerated dose of 4005 mg per day were administered as five 267 mg capsules three times daily to healthy adult volunteers over a 12-day dose escalation. In the event of a suspected overdose, appropriate supportive medical care should be provided, including monitoring of vital signs and observation of the clinical status of the patient.

17 PATIENT COUNSELING INFORMATION

Advise patients to read the FDA-approved patient labeling (Patient Information).

Liver Function Elevations

Advise patients that they may be required to undergo liver function testing periodically. Instruct patients to immediately report any symptoms of a liver problem (e.g., skin or the white of eyes turn yellow, urine turns dark or brown (tea-colored), pain on the right side of stomach, blood or bruise more easily than normal, lethargy) (see Warnings and Precautions (5.3)).

Geographical Variations

Advising patients to avoid or minimize exposure to sunlight (including sunlamps) during use of ESBRIET because of concern for photosensitivity reactions or rash. Instruct patients to use a sunblock and to wear clothing that protects against sun exposure. Instruct patients to report symptoms of photosensitivity reaction or rash to their physician. Temporary dosage reductions or discontinuations may be required (see Warnings and Precautions (5.3)).

Extraventricular Tachycardia

Instruct patients to report symptoms of persistent gastrointestinal effects including nausea, diarrhea, dyspepsia, vomiting, gastro-esophageal reflux disease, and abdominal pain. Temporary dosage reductions or discontinuations may be required (see Warnings and Precautions (5.3)).

Smokers

Encourage patients to stop smoking prior to treatment with ESBRIET and to avoid smoking when using ESBRIET (see Clinical Pharmacology section 12.3 in full Prescribing Information).

Note: This section is not intended for patients.

Instruct patients to take ESBRIET with food to help decrease nausea and dizziness.

Distributed by:
Genentech USA, Inc.
A Member of the Roche Group
1 DNA Way, South San Francisco, CA 94080-4990

Genentech is a registered U.S. trademark of Genentech, Inc.
©2016/2017 Genentech, Inc. All rights reserved. ESB10115/04700(1) 10/16

Instruct patients to report symptoms of persistent gastrointestinal effects including nausea, diarrhea, dyspepsia, vomiting, gastro-esophageal reflux disease, and abdominal pain. Temporary dosage reductions or discontinuations may be required (see Warnings and Precautions (5.3)).

Smokers

Encourage patients to stop smoking prior to treatment with ESBRIET and to avoid smoking when using ESBRIET (see Clinical Pharmacology section 12.3 in full Prescribing Information).

Note: This section is not intended for patients.

Instruct patients to take ESBRIET with food to help decrease nausea and dizziness.

Distributed by:
Genentech USA, Inc.
A Member of the Roche Group
1 DNA Way, South San Francisco, CA 94080-4990

Genentech is a registered U.S. trademark of Genentech, Inc.
©2016/2017 Genentech, Inc. All rights reserved. ESB10115/04700(1) 10/16

Instruct patients to report symptoms of persistent gastrointestinal effects including nausea, diarrhea, dyspepsia, vomiting, gastro-esophageal reflux disease, and abdominal pain. Temporary dosage reductions or discontinuations may be required (see Warnings and Precautions (5.3)).

Smokers

Encourage patients to stop smoking prior to treatment with ESBRIET and to avoid smoking when using ESBRIET (see Clinical Pharmacology section 12.3 in full Prescribing Information).

Note: This section is not intended for patients.

Instruct patients to take ESBRIET with food to help decrease nausea and dizziness.

Distributed by:
Genentech USA, Inc.
A Member of the Roche Group
1 DNA Way, South San Francisco, CA 94080-4990

Genentech is a registered U.S. trademark of Genentech, Inc.
©2016/2017 Genentech, Inc. All rights reserved. ESB10115/04700(1) 10/16
Continued from previous page

FVC at 7 and 13 years, while ACOS participants had significantly lower FVC at 45 years,” the researchers said. “There was no evidence of effect modification by childhood lung infections, childhood asthma, maternal asthma, maternal smoking, or paternal smoking during childhood on the associations between childhood lung function and the disease groups,” they noted.

The study was limited by its “relatively small sample sizes for the ACOS and COPD alone groups” and the absence of post-BD spirometry at 7 years, they added. The researchers concluded that “screening of lung function in school-aged children may provide an opportunity to detect children likely to have ongoing poor lung health, such as those with lung function below the lower limit of normal,” and that “[multifaceted] intervention strategies could then be implemented to reduce the burden of COPD and ACOS in adulthood.”

Asked to comment on the study, Aparna Swaminathan, MD, a pulmonary/critical care fellow at Duke University, Durham, N.C., and a Duke Clinical Research Institute fellow, said she would want to know “what is driving the effects in the study” before designing an intervention. “I suspect that genetics may play a big role in the results, and there is increasing interest in learning how genetics are involved in COPD,” she added.

The groups with ACOS and COPD have higher rates of maternal smoking, and while this study determined that the association between childhood low lung function and development of COPD and ACOS is independent of maternal smoking, maternal smoking still seems like a good area to target,” she said in an interview.

“I would be interested in dividing this group up further and learning the outcomes of their lung function and development of COPD and ACOS.”

Dr. Gartman said that genetics may play a big role in the results, and there is increasing interest in learning how genetics are involved in COPD. A better understanding of the risk factors for lower lung function in children may also provide targets of intervention. The researchers concluded that “screening of lung function in school-aged children may provide an opportunity to detect children likely to have ongoing poor lung health, such as those with lung function below the lower limit of normal,” and that “[multifaceted] intervention strategies could then be implemented to reduce the burden of COPD and ACOS in adulthood.”

Asked to comment on the study, Aparna Swaminathan, MD, a pulmonary/critical care fellow at Duke University, Durham, N.C., and a Duke Clinical Research Institute fellow, said she would want to know “what is driving the effects in the study” before designing an intervention. “I suspect that genetics may play a big role in the results, and there is increasing interest in learning how genetics are involved in COPD,” she added.

The groups with ACOS and COPD have higher rates of maternal smoking, and while this study determined that the association between childhood low lung function and development of COPD and ACOS is independent of maternal smoking, maternal smoking still seems like a good area to target,” she said in an interview.

“I would be interested in dividing this group up further and learning the outcomes of their lung function and development of COPD and ACOS.”

A population of children with low lung function today may be experiencing relatively less asthma.

DR. GARTMAN

The investigators recommended future research to understand the underlying causes of the differences in lung function between the children with low lung function now and the children with low lung function in the study who had low lung function during childhood.

“The best thing we currently can do for children with low lung function is try and determine the underlying cause and treat any active diseases [such as asthma] that we can,” Dr. Swaminathan said. “This study reminds us of the need to keep searching for causes of low lung function that may be reversible,” she said.

The investigators recommended future research to understand the underlying causes of the differences in lung function between the children with low lung function now and the children with low lung function in the study who had low lung function during childhood.

“The best thing we currently can do for children with low lung function is try and determine the underlying cause and treat any active diseases [such as asthma] that we can,” Dr. Swaminathan said. “This study reminds us of the need to keep searching for causes of low lung function that may be reversible,” she said.

The investigators recommended future research to understand the underlying causes of the differences in lung function between the children with low lung function now and the children with low lung function in the study who had low lung function during childhood.

“The best thing we currently can do for children with low lung function is try and determine the underlying cause and treat any active diseases [such as asthma] that we can,” Dr. Swaminathan said. “This study reminds us of the need to keep searching for causes of low lung function that may be reversible,” she said.

The investigators recommended future research to understand the underlying causes of the differences in lung function between the children with low lung function now and the children with low lung function in the study who had low lung function during childhood.

“The best thing we currently can do for children with low lung function is try and determine the underlying cause and treat any active diseases [such as asthma] that we can,” Dr. Swaminathan said. “This study reminds us of the need to keep searching for causes of low lung function that may be reversible,” she said.

The investigators recommended future research to understand the underlying causes of the differences in lung function between the children with low lung function now and the children with low lung function in the study who had low lung function during childhood.

“The best thing we currently can do for children with low lung function is try and determine the underlying cause and treat any active diseases [such as asthma] that we can,” Dr. Swaminathan said. “This study reminds us of the need to keep searching for causes of low lung function that may be reversible,” she said.

The investigators recommended future research to understand the underlying causes of the differences in lung function between the children with low lung function now and the children with low lung function in the study who had low lung function during childhood.

“The best thing we currently can do for children with low lung function is try and determine the underlying cause and treat any active diseases [such as asthma] that we can,” Dr. Swaminathan said. “This study reminds us of the need to keep searching for causes of low lung function that may be reversible,” she said.

The investigators recommended future research to understand the underlying causes of the differences in lung function between the children with low lung function now and the children with low lung function in the study who had low lung function during childhood.

“The best thing we currently can do for children with low lung function is try and determine the underlying cause and treat any active diseases [such as asthma] that we can,” Dr. Swaminathan said. “This study reminds us of the need to keep searching for causes of low lung function that may be reversible,” she said.

The investigators recommended future research to understand the underlying causes of the differences in lung function between the children with low lung function now and the children with low lung function in the study who had low lung function during childhood.

“The best thing we currently can do for children with low lung function is try and determine the underlying cause and treat any active diseases [such as asthma] that we can,” Dr. Swaminathan said. “This study reminds us of the need to keep searching for causes of low lung function that may be reversible,” she said.

The investigators recommended future research to understand the underlying causes of the differences in lung function between the children with low lung function now and the children with low lung function in the study who had low lung function during childhood.

“The best thing we currently can do for children with low lung function is try and determine the underlying cause and treat any active diseases [such as asthma] that we can,” Dr. Swaminathan said. “This study reminds us of the need to keep searching for causes of low lung function that may be reversible,” she said.

The investigators recommended future research to understand the underlying causes of the differences in lung function between the children with low lung function now and the children with low lung function in the study who had low lung function during childhood.

“The best thing we currently can do for children with low lung function is try and determine the underlying cause and treat any active diseases [such as asthma] that we can,” Dr. Swaminathan said. “This study reminds us of the need to keep searching for causes of low lung function that may be reversible,” she said.
rates among affected patients during 3-month intervals when hospitals were and were not using at least 20% less norepinephrine than baseline. The researchers used Premier Healthcare Database, which includes both standard claims and detailed, dated logs of all services billed to patients or insurance, with minimal missing data.

A total of 77% patients admitted with septic shock received norepinephrine before the shortage. During the lowest point of the shortage, 56% of patients received it, the researchers reported. Clinicians most often used phenylephrine instead, prescribing it to up to 54% of patients during the worst time of the shortage. The absolute increase in mortality during the quarters of shortage was 3.7% (95% CI, 1.3%-6.0%).

Several factors might explain the link between norepinephrine shortage and mortality, said the investigators. The vasopressors chosen to replace norepinephrine might result directly in worse outcomes, but a decrease in norepinephrine use also might be a proxy for relevant variables such as delayed use of vasopressors, lack of knowledge of how to optimally dose vasopressors besides norepinephrine, or the absence of a pharmacist dedicated to helping optimize the use of limited supplies. The study did not uncover a dose-response association between greater decreases in norepinephrine use and increased mortality, the researchers noted. “This may be due to a threshold effect of vasopressor shortage on mortality, or lack of power due to relatively few hospital quarters at the extreme levels of vasopressor shortage,” they wrote.

Because the deaths captured included only those that occurred in-hospital, “the results may have underestimated mortality, particularly for hospitals that tend to transfer patients early to other skilled care facilities,” the researchers noted.

The cohort of patients was limited to those who received vasopressors for 2 or more days and excluded patients who died on the first day of vasopressor treatment, the researchers said.

The Herbert and Florence Irving Scholars Program at Columbia University provided funding. One coinvestigator disclosed grant funding from the National Institutes of Health and personal fees from UpToDate. The other investigators reported having no conflicts of interest.
P				people with cystic fibrosis (CF) survive an average of 10 years longer if they live in Canada than if they live in the United States, according to a report published online March 14 in Annals of Internal Medicine.

Differences between the two nations’ health care systems, including access to insurance, “may, in part, explain the Canadian survival advantage,” said Anne L. Stephenson, MD, PhD, of St. Michael’s Hospital, Toronto, and her associates.

Previous studies have suggested a significant survival gap between Americans and Canadians with CF, but their conclusions were “problematic” because of inherent differences between the two countries in registry data, which complicated direct comparisons. Dr. Stephenson and her associates used several statistical strategies to adjust for these differences, and confirmed the discrepancy in survival by analyzing information for 45,448 U.S. patients and 5,941 Canadian patients treated at 110 U.S. and 42 Canadian specialty centers from 1990 through 2013.

Overall there were 9,654 U.S. deaths and 1,288 Canadian deaths during the study period, for nearly identical overall mortality between the two countries (21.2% and 21.7%, respectively). However, the median survival was 10 years longer in Canada (50.9 years) than in the United States (40.6 years), a gap that persisted across numerous analyses that adjusted for patient characteristics and clinical factors, including CF severity.

Five studies identified PE location

Five studies identified PE location. AE-COPD and found a potential connection between pleuritic chest pain and signs of heart failure. Clinical suspicion should play a role in determining the diagnostic testing. This knowledge may not only help us to recognize more cases where pulmonary embolism may play a role, but may help us provide treatment earlier and may reduce mortality from this serious clinical disease.
CONSIDER MAKING 24-HOUR BREO YOUR GO-TO ICS/LABA OPTION

BREO® ellipta®
(fluticasone furoate 100 mcg and vilanterol 25 mcg inhalation powder)

For appropriate adult patients

BREO 100/25 is for maintenance treatment of airflow obstruction in patients with COPD, and for reducing COPD exacerbations in patients with a history of exacerbations. BREO 100/25 is the only strength indicated for COPD.

BREO is for adult patients with asthma uncontrolled on an ICS or whose disease severity clearly warrants an ICS/LABA.

BREO is NOT indicated for the relief of acute bronchospasm.

Important Safety Information

WARNING: ASThma-RELATED DEATH
Long-acting beta₂-adrenergic agonists (LABA), such as vilanterol, one of the active ingredients in BREO, increase the risk of asthma-related death. A placebo-controlled trial with another LABA (salmeterol) showed an increase in asthma-related deaths. This finding with salmeterol is considered a class effect of all LABA. Currently available data are inadequate to determine whether concurrent use of inhaled corticosteroids (ICS) or other long-term asthma control drugs mitigates the increased risk of asthma-related death from LABA. Available data from controlled clinical trials suggest that LABA increase the risk of asthma-related hospitalization in pediatric and adolescent patients.

Please see additional Important Safety Information for BREO on pages 2–4.
Please see accompanying Brief Summary of Prescribing Information, including Boxed Warning, for BREO on pages 5–7.
In patients with asthma uncontrolled on an ICS

In a placebo-controlled 12-week study²:

- \(\text{wm FEV}_1 \): in a subset of patients, BREO 100/25 (n=108) demonstrated a numerically greater improvement in change from baseline in \(\text{wm FEV}_1 \) (0-24 hours) compared with FF 100 mcg (n=106) of 116 mL (95% CI: –5, 236; \(P = 0.06 \)) and a statistically significant 302-mL improvement (\(P < 0.001 \)) compared with placebo (n=95) at Week 12.

Study description:

Design: 12-week, randomized, double-blind study that evaluated the safety and efficacy of BREO 100/25, BREO 200/25, and FF 100 mcg (each administered once daily in the evening). Patients who reported symptoms and/or rescue beta₂-agonist use during a 4-week run-in period on mid- to high-dose ICS (≥250 mcg fluticasone propionate [FP] twice daily or equivalent) were randomized to treatment.

Patients: 1039 patients with asthma aged 12 years and older (mean age: 46 years). At baseline, patients had a mean percent predicted \(\text{FEV}_1 \) of 62%.

² BREO is approved for use in patients ≥18 years of age.

Primary endpoint: \(\text{wm FEV}, \) (0-24 hours) at Week 12.

Weighted mean \(\text{FEV}_1 \) (0-24 hours) was calculated from predose \(\text{FEV}_1 \) (within 30 minutes of dose) and postdose \(\text{FEV}_1 \) after 5, 15, and 30 minutes and 1, 2, 3, 4, 5, 12, 16, 20, 23, and 24 hours.

\(\text{FEV}_1 = \) forced expiratory volume in 1 second; LS=least squares.

BREO: CONTINUOUS LUNG FUNCTION IMPROVEMENT

Important Safety Information (cont’d)

WARNING: ASTHMA-RELATED DEATH

(BOXED WARNING cont’d)

When treating patients with asthma, only prescribe BREO for patients not adequately controlled on a long-term asthma control medication, such as an ICS, or whose disease severity clearly warrants initiation of treatment with both an ICS and a LABA. Once asthma control is achieved and maintained, assess the patient at regular intervals and step down therapy (e.g., discontinue BREO) if possible without loss of asthma control and maintain the patient on a long-term asthma control medication, such as an ICS. Do not use BREO for patients whose asthma is adequately controlled on low- or medium-dose ICS.

CONTRAINDICATIONS

The use of BREO is contraindicated in the following conditions:

- Primary treatment of status asthmaticus or other acute episodes of COPD or asthma where intensive measures are required.
- Severe hypersensitivity to milk proteins or demonstrated hypersensitivity to fluticasone furoate, vilanterol, or any of the excipients.

WARNINGS AND PRECAUTIONS

- BREO should not be initiated in patients during rapidly deteriorating or potentially life-threatening episodes of COPD or asthma.
- BREO should not be used for the relief of acute symptoms, i.e., as rescue therapy for the treatment of acute episodes of bronchospasm. Acute symptoms should be treated with an inhaled, short-acting beta₂-agonist.
- BREO should not be used more often than recommended, at higher doses than recommended, or in conjunction with other medicines containing LABA, as an overdose may result. Clinically significant cardiovascular effects and fatalities have been reported in association with excessive use of inhaled sympathomimetic drugs. Patients using BREO should not use another medicine containing a LABA (e.g., salmeterol, formoterol fumarate, arformoterol tartrate, indacaterol) for any reason.
FOR A FULL 24 HOURS, WITH JUST ONE DAILY INHALATION

In patients with COPD

BREO 100/25 (n=33) provided a 220-mL improvement from baseline in wm FEV₁ (0-24 hours) vs placebo (n=51) at end of the 28-day treatment period (P<0.001).^{3,4}

Study description

Design: randomized, double-blind, crossover study compared the effect of 28 days of treatment with BREO 100/25 and placebo (each administered once daily in the morning) on lung function over 24 hours.

Patients: 54 patients (mean age: 58 years) with COPD who had a mean percent predicted postbronchodilator FEV₁ of 50% and a mean postbronchodilator FEV₁/FVC ratio of 53%.

Primary endpoint: wm FEV₁ (0-24 hours) at end of 28-day treatment period.

Secondary endpoint: serial FEV₁ (0-25 hours) assessed over 1 full day at Days 28 and 29.

FVC=forced vital capacity.

BREO 100/25 is the only strength indicated for COPD.

In a separate 6-month lung-function study: a randomized, double-blind, parallel-group study compared the effect of BREO 100/25 vs FF 100 mcg and vs placebo (each administered once daily) on lung function in 1030 patients (mean age: 63 years) with COPD.¹ For the co-primary endpoints, BREO significantly improved wm FEV₁ (0-4 hours) postdose on Day 168 by 120 mL vs FF[¶] and 173 mL vs placebo (P<0.001 for both); and BREO demonstrated a greater difference in LS mean change from baseline in trough FEV₁, at Day 169 of 115 mL vs placebo (95% CI: 60, 169; P<0.001), the 48-mL difference vs vilanterol (VI) 25 mcg[§] did not achieve statistical significance (95% CI: −6, 102; P=0.082).^{3,5}

At screening, patients had a mean postbronchodilator percent predicted FEV₁ of 48% and a mean postbronchodilator FEV₁/FVC ratio of 48%.

The wm comparison of BREO with FF, the ICS component, evaluated the contribution of VI to BREO. ICS are not approved as monotherapy for COPD.

The trough FEV₁, comparison of BREO with VI, the LABA component, evaluated the contribution of FF to BREO. VI is not approved as monotherapy.

Important Safety Information (cont’d)

WARNINGS AND PRECAUTIONS (cont’d)

• Oropharyngeal candidiasis has occurred in patients treated with BREO. Advise patients to rinse the mouth with water without swallowing following inhalation to help reduce the risk of oropharyngeal candidiasis.

• An increase in the incidence of pneumonia has been observed in subjects with COPD receiving BREO. There was also an increased incidence of pneumonias resulting in hospitalization. In some incidences these pneumonia events were fatal.

– In replicate 12-month studies of 3255 subjects with COPD who had experienced a COPD exacerbation in the previous year, there was a higher incidence of pneumonia reported in subjects receiving BREO 100/25 (6% [51 of 806 subjects]), fluticasone furoate (FF)/vilanterol (VI) 50/25 mcg (6% [48 of 820 subjects]), and BREO 200/25 (7% [55 of 811 subjects]) than in subjects receiving VI 25 mcg (3% [27 of 818 subjects]). There was no fatal pneumonia in subjects receiving VI or FF/VI 50/25 mcg. There was fatal pneumonia in 1 subject receiving BREO 100/25 and in 7 subjects receiving BREO 200/25 (<1% for each treatment group).

Please see additional Important Safety Information for BREO on pages 1, 2, and 4.

Please see accompanying Brief Summary of Prescribing Information, including Boxed Warning, for BREO on pages 5–7.

BREO® ellipta®

(fluticasone furoate 100 mcg and vilanterol 25 mcg inhalation powder)
CONSIDER 24-HOUR BREO TODAY

Important Safety Information (cont’d)

WARNINGS AND PRECAUTIONS (cont’d)

• Physicians should remain vigilant for the possible development of pneumonia in patients with COPD, as the clinical features of such infections overlap with the symptoms of COPD exacerbations.

• Patients who use corticosteroids are at risk for potential worsening of existing tuberculosis, fungal, bacterial, viral, or parasitic infections; or ocular herpes simplex. A more serious or even fatal course of chickenpox or measles may occur in susceptible patients. Use caution in patients with the above because of the potential for worsening of these infections.

• Particular care is needed for patients who have been transferred from systemically active corticosteroids to inhaled corticosteroids because deaths due to adrenal insufficiency have occurred in patients with asthma during and after transfer from systemic corticosteroids to less systemically available inhaled corticosteroids. Taper patients slowly from systemic corticosteroids if transferring to BREO.

• Hypercortisolism and adrenal suppression may occur with very high doses or at the regular dosage of inhaled corticosteroids in susceptible individuals. If such changes occur, discontinue BREO slowly.

• Caution should be exercised when considering the coadministration of BREO with long-term ketoconazole and other known strong CYP3A4 inhibitors (e.g., ritonavir, clarithromycin, conivaptan, indinavir, irtraconazole, lopinavir, nefazodone, nelfinavir, saquinavir, telithromycin, treloandomycin, voriconazole) because increased systemic corticosteroid and cardiovascular adverse effects may occur.

• If paradoxical bronchospasm occurs, discontinue BREO and institute alternative therapy.

• Hypersensitivity reactions such as anaphylaxis, angioedema, rash, and urticaria may occur after administration of BREO. Discontinue BREO if such reactions occur.

• Vilterol can produce clinically significant cardiovascular effects in some patients as measured by increases in pulse rate, systolic or diastolic blood pressure, and also cardiac arrhythmias, such as supraventricular tachycardia and extrasystoles. If such effects occur, BREO may need to be discontinued. BREO should be used with caution in patients with cardiovascular disorders, especially coronary insufficiency, cardiac arrhythmias, and hypertension.

• Decreases in bone mineral density (BMD) have been observed with long-term administration of products containing inhaled corticosteroids. Patients with major risk factors for decreased bone mineral content, such as prolonged immobilization, family history of osteoporosis, postmenopausal status, tobacco use, advanced age, poor nutrition, or chronic use of drugs that can reduce bone mass (e.g., anticonvulsants, oral corticosteroids) should be monitored and treated with established standards of care. Since patients with COPD often have multiple risk factors for reduced BMD, assessment of BMD is recommended prior to initiating BREO and periodically thereafter.

• Glaucoma, increased intraocular pressure, and cataracts have been reported in patients with COPD or asthma following the long-term administration of inhaled corticosteroids. Therefore, close monitoring is warranted in patients with a change in vision or with a history of increased intraocular pressure, glaucoma, and/or cataracts. Use caution in patients with convulsive disorders, thyrotoxicosis, diabetes mellitus, ketoacidosis, and in patients who are unusually responsive to sympathomimetic amines.

• Be alert to hypokalemia and hyperglycemia.

• Orally inhaled corticosteroids may cause a reduction in growth velocity when administered to children and adolescents.

ADVERSE REACTIONS: BREO FOR COPD

• The most common adverse reactions (≥2% and more common than placebo) reported in two 6-month clinical trials with BREO (and placebo) were nasopharyngitis, 9% (8%); upper respiratory tract infection, 7% (3%); headache, 7% (5%); and oral candidiasis, 5% (2%).

• In addition to the events reported in the 6-month studies, adverse reactions occurring in ≥3% of the subjects with COPD treated with BREO in two 1-year studies included back pain, pneumonia, bronchitis, sinusitis, cough, oropharyngeal pain, arthralgia, influenza, pharyngitis, and pyrexia.

• In a 12-week trial, adverse reactions (≥2% incidence and more common than placebo) reported in subjects taking BREO 100/25 (and placebo) were: nasopharyngitis, 10% (7%); headache, 5% (4%); oropharyngeal pain, 2% (1%); oral candidiasis, 2% (0%); and dysphonia, 2% (0%). In a separate 12-week trial, adverse reactions (≥2% incidence) reported in subjects taking BREO 200/25 (or BREO 100/25) were: headache, 8% (8%); nasopharyngitis, 7% (6%); influenza, 3% (3%); upper respiratory tract infection, 2% (2%); oropharyngeal pain, 2% (2%); sinusitis, 2% (1%); bronchitis, 2% (<1%); and cough, 1% (2%).

• In addition to the adverse reactions reported in the two 12-week trials, adverse reactions (≥2% incidence) reported in subjects taking BREO 200/25 once daily in a 24-week trial included viral respiratory tract infection, pharyngitis, pyrexia, and arthralgia, and with BREO 100/25 or 200/25 in a 12-month trial included pyrexia, back pain, extrasystoles, upper abdominal pain, respiratory tract infection, allergic rhinitis, pharyngitis, rhinitis, arthralgia, supraventricular extrasystoles, ventricular extrasystoles, acute sinusitis, and pneumonia.

• In a 24- to 76-week trial of subjects with a history of 1 or more asthma exacerbations within the previous 12 months, asthma-related hospitalizations occurred in 1% of subjects treated with BREO 100/25. There were no asthma-related deaths or asthma-related intubations observed in this trial.

DRUG INTERACTIONS

• Caution should be exercised when considering the coadministration of BREO with long-term ketoconazole and other known strong CYP3A4 inhibitors (e.g., ritonavir, clarithromycin, conivaptan, indinavir, irtraconazole, lopinavir, nefazodone, nelfinavir, saquinavir, telithromycin, treloandomycin, voriconazole) because increased systemic corticosteroid and cardiovascular adverse effects may occur.

• BREO should be administered with extreme caution to patients being treated with monoamine oxidase inhibitors, tricyclic antidepressants, or drugs known to prolong the QTc interval, or within 2 weeks of discontinuation of such agents, because the effect of adrenergic agonists, such as vilterol, on the cardiovascular system may be potentiated by these agents.

• Use beta-blockers with caution as they not only block the pulmonary effect of beta-agonists, such as vilterol, but may also produce severe bronchospasm in patients with COPD or asthma.

• Use caution in patients taking non–potassium-sparing diuretics, as electrocardiographic changes and/or hypokalemia associated with non–potassium-sparing diuretics may worsen with concomitant beta-agonists.

USE IN SPECIFIC POPULATIONS

• BREO is not indicated for use in children and adolescents. The safety and efficacy in pediatric patients (aged 17 years and younger) have not been established.

• Use BREO with caution in patients with moderate or severe hepatic impairment. Fluticasone furoate systemic exposure increased by up to 3-fold in subjects with hepatic impairment. Monitor for corticosteroid-related side effects.

Please see additional Important Safety Information for BREO on pages 1–3. Please see accompanying Brief Summary of Prescribing Information, including Boxed Warning, for BREO on pages 5–7.

BREO and ELLIPTA are registered trademarks of GSK.

BREO ELLIPTA was developed in collaboration with Theravance.

www.BREOpref.com

©2016 GSK group of companies. All rights reserved. Printed in USA. B0463BREO November 2016

BREO® ellipta®
(fluicasone furoate 100 mcg and vilanterol 25 mcg inhalation powder)
WARNING: ASTHMA-RELATED DEATH

Long-acting beta₂-adrenergic agonist (LABA), such as vilanterol, one of the active ingredients in BREO, increase the risk of asthma-related death. Data from a large placebo-controlled US trial that compared the safety of another LABA (salmeterol) with placebo added to usual asthma therapy showed an increase in asthma-related deaths in subjects receiving salmeterol (13/13,176 in subjects treated with salmeterol vs. 3/13,179 in subjects treated with placebo; relative risk: 4.37 [95% CI: 1.25, 15.34]). The increased risk of asthma-related death is considered a class effect of LABA, including vilanterol, one of the active ingredients in BREO. Therefore, if the rate of asthma-related death is increased in subjects treated with BREO has been conducted. Data are not available to determine whether the risk of death in patients with COPD is increased by LABA.

5.2 Deterioration of Disease and Acute Episodes: BREO should not be initiated in patients during rapidly deteriorating or potentially life-threatening episodes of COPD or asthma. BREO has not been studied in subjects with acutely deteriorating COPD or asthma. The initiation of BREO in this setting is not appropriate. BREO could deteriorate acute over a period of hours or chronically over several days or longer. If BREO 100/25 no longer controls symptoms of bronchoconstriction; the patient’s inhaler, short-acting beta₂, agonist became less effective; or the patient’s inhaler, short-acting beta₂, agonist than usual, these may be markers of deterioration of disease. In this setting a reevaluation of the patient and the BREO treatment regimen should be undertaken at once. For COPD, increasing the daily dose of BREO 100/25 is not appropriate in this situation.

Increasing use of inhaled, short-acting beta₂, agonists is a marker of deteriorating asthma. In this situation, the patient requires immediate reevaluation with reassessment of the treatment regimen, giving special consideration to the possible need for replacing the current strength of BREO with a higher strength, adding additional ICS, or initiating systemic corticosteroids. Patients should not use more than 1 inhalation once daily of BREO.

BREO should not be used for the relief of acute symptoms, i.e., as a rescue therapy for the treatment of acute episodes of bronchospasm. BREO has not been studied in the relief of acute symptoms and extra doses should not be used. Other symptoms should be treated with an inhaler, short-acting beta₂, agonist.

When beginning treatment with BREO, patients who have been taking oral or inhaled, short-acting beta₂, agonists on a regular basis (e.g., 4 times a day) should be instructed to discontinue the regular use of these drugs and to use them only for symptomatic relief of acute respiratory symptoms. When prescribing BREO, the healthcare provider should also prescribe an inhaler, short-acting beta₂, agonist and instruct the patient on how it should be used.

5.3 Excessive Use of BREO and Use with Other Long-Acting Beta₂-Agonists: BREO should not be used more often than recommended, at higher doses than recommended, continually (i.e., continuous use), or with other LABA containing ICS, as LABA, as an overdose may result. Clinically significant cardiovascular effects and fatalities have been reported in association with excessive use of inhaled sympathomimetic drugs. Patients using BREO should not use another LABA containing ICS, salmeterol, formoterol, fumurate, inhaled corticosteroids, or inhaled common with asthma, COPD, or asthma symptoms should be carefully monitored during withdrawal of oral corticosteroids. In addition, patients should be observed for signs and symptoms of adrenal insufficiency, such as fatigue, lassitude, weakness, nausea, vomiting, and hypotension. Transfer of patients from systemic corticosteroid therapy to BREO may unmask allergic conditions previously suppressed by the systemic corticosteroid therapy (e.g., rhinitis, conjunctivitis, eczema, allergic fungal, eosinophilic conditions).

During withdrawal from oral corticosteroids, some patients may experience symptoms of systemically active corticosteroid withdrawal (e.g., joint and/or muscular pain, lassitude, depression) despite maintenance or even improvement of respiratory function.

5.4 Local Effects of ICS: In clinical trials, the development of localized infections of the mouth and pharynx with Candida albicans has occurred in subjects treated with BREO. When such an infection develops, it should be treated with appropriate local or systemic (i.e., oral) antifungal therapy while treatment with BREO continues, but at times therapy with BREO may need to be interrupted. Advise the patient to rinse his/her mouth with water without swallowing following inhalation to help reduce the risk of oropharyngeal candidiasis.

5.5 Pneumonia: An increase in the incidence of pneumonia has been observed in subjects with COPD receiving BREO 100/25 in clinical trials. There was also an increased incidence of pneumonias resulting in hospitalization. In some instances these pneumonia events were fatal. Patients should remain vigilant for the possible development of pneumonia in patients with COPD as the clinical features of such infections overlap with the symptoms of exacerbations of COPD. If such effects occur, BREO should be reduced slowly, consistent with accepted procedures for reducing systemic corticosteroids, and other treatments for management of COPD or asthma symptoms should be considered.

5.6 Immunosuppression: Persons who use drugs that suppress the immune system are more susceptible to infections than healthy individuals. Chickenpox and measles, for example, can have a more serious or even fatal course in susceptible persons. Patients should be advised to avoid contact with children who have chickenpox or measles. If such children or adults who have not had these diseases or been properly immunized, particular care should be taken to avoid exposure. How the dose, route, and duration of corticosteroid administration affect the risk of developing a disseminated infection is not known. The contribution of the underlying disease and/or prior corticosteroid treatment to the risk is also not known. If a patient is exposed to chickenpox, prophylaxis with varicella zoster immune globulin (VZIG) may be indicated. (See the respective package inserts for complete VZIG and IS prescribing information.) If chickenpox develops, treatment with varicella zoster immune globulin (VZIG) may be considered.

ICS should be used with caution, if at all, in patients with active or recent quiescent tuberculosis infections of the respiratory tract; systemic fungal, bacterial, viral, or parasitic infections; or ocular herpes simplex.

5.7 Transferring Patients from Systemic Corticosteroid Therapy: Particular care is needed for patients who have been transferred from systemically active corticosteroids to ICS because deaths due to adrenal insufficiency have been reported in patients with asthma during and after transfer of corticosteroids to ICS. After withdrawal from systemic corticosteroids, a number of months are required for recovery of hypothalamic-pituitary-adrenal (HPA) function. Patients who have been previously maintained on 20 mg or more of prednisone (or its equivalent) may be most susceptible, particularly when their systemic corticosteroids have been almost completely withdrawn.

During this period of HPA suppression, patients may exhibit signs and symptoms of systemic corticosteroid withdrawal (e.g., rhinitis, conjunctivitis, eczema, allergic fungal, eosinophilic conditions) associated with severe electrolyte loss. Although BREO may control COPD or asthma symptoms during these episodes, in recommended doses it supplies less than normal physiological amounts of glucocorticoid systemically and does not provide the mineralocorticoid activity that is necessary for coping with these emergencies.

During periods of stress, a severe COPD exacerbation, or a severe asthma attack, patients who have been withdrawn from systemic corticosteroids should be instructed to resume oral corticosteroids (in large doses) immediately and to contact their physicians for further instruction. These patients should also be instructed to carry a warning card indicating that they may need supplementary systemic corticosteroids during periods of stress, a severe COPD exacerbation, or a severe asthma attack.

Patients requiring oral corticosteroids should be weaned slowly from systemically active corticosteroids after transferring to BREO. Prednisone reduction can be accomplished by reducing the daily prednisone dose by 2.5 mg on a weekly basis during treatment with BREO. Lung function (FEV₁ or peak expiratory flow), beta-agonist use, and COPD or asthma symptoms should be carefully monitored during withdrawal of oral corticosteroids. In addition, patients should be observed for signs and symptoms of adrenal insufficiency, such as fatigue, lassitude, weakness, nausea, vomiting, and hypotension. Transfer of patients from systemic corticosteroid therapy to BREO may unmask allergic conditions previously suppressed by the systemic corticosteroid therapy (e.g., rhinitis, conjunctivitis, eczema, allergic fungal, eosinophilic conditions).

During withdrawal from oral corticosteroids, some patients may experience symptoms of systemically active corticosteroid withdrawal (e.g., joint and/or muscular pain, lassitude, depression) despite maintenance or even improvement of respiratory function.

5.8 Hypercorticosteroidism and Adrenal Suppression: Inhaled fluticasone furoate is absorbed into the circulation and can be systemically active. Effects of fluticasone furoate on the HPA axis are not observed with the therapeutic doses of BREO. However, exceeding the recommended dosage or concomitant use with a strong cytochrome P450 3A4 (CYP3A4) inhibitor may result in HPA dysfunction [see Warnings and Precautions (5.9), Drug Interactions (7.1)].

Because of the possibility of significant systemic absorption of ICS in sensitive patients, patients treated with BREO should be observed carefully for any evidence of systemic corticosteroid effects.

Particular care should be taken in observing patients postoperatively or during periods of stress for evidence of inadequate adrenal response.

It is possible that systemic corticosteroid effects such as hypercorticosteroidism and adrenal suppression (including adrenal crisis) may appear in a small number of patients who are taking systemically active corticosteroids. If such effects occur, BREO should be reduced slowly, consistent with accepted procedures for reducing systemic corticosteroids, and other treatments for management of COPD or asthma symptoms should be considered.

5.9 Drug Interactions with Strong Cytochrome P450 3A4 (CYP3A4) Inhibitors: Caution should be exercised when considering the coadministration of BREO with long-acting ketoconazole and other known strong CYP3A4 inhibitors (e.g., ritonavir, clarithromycin, conivaptan, indinavir, itraconazole, lopinavir, nefazodone, nelfinavir, saquinavir, telithromycin).

Continued on next page
troleandomycin, voriconazole) because increased systemic corticosteroid and increased cardiovascular adverse effects may occur [see Drug Interactions (7.3)]. Clinical Pharmacology (12.3) of full prescribing information.

5.10 Paradoxical Bronchospasm: As with other inhaled medicines, BREO can produce paradoxical bronchospasm, which may be life threatening. If paradoxical bronchospasm occurs following dosing with BREO, it should be treated immediately with an inhaled, short-acting bronchodilator; BREO should be discontinued immediately; and alternative therapy should be instituted.

5.11 hypersensitivity reactions, including anaphylaxis: Hypersensitivity reactions such as anaphylaxis, angioedema, rash, and urticaria may occur after administration of BREO. Discontinue BREO if such reactions occur. There have been reports of anaphylactic reactions in patients with severe milk protein allergy after inhalation of other powder medications containing lactose; therefore, patients with severe milk protein allergy should not use BREO [see Contraindications (4)].

5.12 cardiovascular Effects: Vilanterol, like other beta-agonists, can produce a clinically significant cardiovascular effect in some patients as measured by increases in pulse rate, systolic or diastolic blood pressure, and also cardiac arrhythmias, such as supraventricular tachycardia and Extrasystoles. If such effects occur, BREO may need to be discontinued. In addition, beta-agonists have been reported to produce electrocardiographic changes, such as flattening of the T wave, prolongation of the QTc interval, and ST segment depression, although the clinical significance of these findings is unknown. Fatalities have been reported in association with excessive use of inhaled sympathomimetic drugs.

In healthy subjects, large doses of inhaled fluticasone furoate/vilanterol (4L times the recommended dose of vilanterol, representing a 12- to 10-fold higher systemic exposure than seen in subjects with COPD or asthma, respectively) have been associated with clinically significant prolongation of the QTc interval, which has potential for producing cardiac arrhythmias. Therefore, BREO, like other sympathomimetic amines, should be used with caution in patients with cardiovascular disorders, especially coronary insufficiency, cardiac arrhythmias, and hypertension.

5.13 Reduction in Bone Mineral Density: Decreases in bone mineral density (BMD) have been observed with long-term administration of products containing ICS. The clinical significance of small changes in BMD with regard to long-term consequences such as fracture is unknown. Other risk factors for decreased bone mineral content, such as prolonged immobilization, family history of osteoporosis, postmenopausal status, tobacco use, advanced age, poor nutrition, or chronic use of drugs that can reduce bone mass (e.g., anticonvulsants, oral corticosteroids) should be monitored and treated with established standards of care. Since patients with COPD often have multiple risk factors for reduced BMD, assessment of BMD is recommended prior to initiating BREO and periodically thereafter. If significant reductions in BMD are seen and BREO is still considered medically important for that patient’s COPD therapy, use of medicine to treat or prevent osteoporosis should be considered.

5.14 Glaucoma and Cataracts: Glaucoma, increased intracocular pressure, and cataracts have been reported in patients with COPD or asthma following the long-term administration of ICS. Therefore, routine monitoring is warranted in patients with a change in vision or with a history of increased intracocular pressure, glaucoma, and/or cataracts.

5.15 Coexisting Conditions: BREO, like all medicines containing sympathomimetic amines, should be used with caution in patients with concomitant disorders or thyrotoxicosis and in those who are unusually responsive to sympathomimetic amines. Doses of the related beta,-adrenergic agonist albuterol, when administered intravenously, have been reported to aggravate preexisting diabetes mellitus and ketosis.

5.16 Hypokalemia and Hyperglycemia: Beta-adrenergic agonist medicines may produce significant hypokalemia in some patients, possibly through intracellular shunting, which has the potential to cause acute cardiovascular adverse effects. The decrease in serum potassium is usually transient, not requiring supplementation. Beta-agonist medications may produce transient hyperglycemia in some patients. In clinical trials evaluating BREO in subjects with COPD or asthma, there was no evidence of a treatment-related increase in serum glucose or potassium.

5.17 Effect on Growth: Daily inhaled corticosteroids may cause a reduction in growth velocity when administered to children and adolescents. [See Use in Specific Populations (8.4) of full prescribing information.]

6. ADVERSE REACTIONS

LABA, such as vilanterol, one of the active ingredients in BREO, increase the risk of asthma-related death. Currently available data are inadequate to determine whether concomitant use of ICS or other long-term asthma control drugs mitigates the increased risk of asthma-related death from LABA. Available data from controlled clinical trials suggest that LABA increase the risk of asthma-related hospitalization in pediatric and adolescent patients. Data from a large placebo-controlled US trial that compared the safety of another LABA (salmeterol) or placebo added to usual asthma therapy demonstrated an increase in asthma-related deaths in subjects receiving salmeterol. [See Warnings and Precautions (5.1)] Systemic and local corticosteroid use may result in the following: Candida albicans infection [see Warnings and Precautions (5.1)]. In clinical trials evaluating BREO in subjects with asthma, 6071 subjects received a dose of BREO 100/25, and 3878 subjects received a dose of BREO 200/25 once daily, and 1,987 subjects received a dose of BREO 200/25 twice daily. Adverse reactions observed in the clinical trials of a drug cannot be directly compared with rates in the clinical trials of similar drugs in other indications, or vice versa.

6.1 Clinical Trials Experience in Chronic Obstructive Pulmonary Disease: The clinical program for BREO included 7,700 subjects with COPD in two 6-month lung function trials, two 12-month exacerbation trials, and 6 other trials of short duration. Of 2,034 subjects with COPD received at least 1 dose of BREO 100/25, and 1,987 subjects received a higher strength of fluticasone furoate/vilanterol. The safety data described below are based on the confirmatory 6- and 12-month trials. Adverse reactions observed in the other trials were similar to those observed in the confirmatory trials.

6.1.1 Indications: The incidence of adverse reactions associated with BREO 100/25 is based on 2 placebo-controlled, 6-month clinical trials (Trials 1 and 2; n=1,224 and n=1,030, respectively, at the 2.54 subjects, 70%) were male and 84% were white. They had a mean age of 62 years and an average smoking history of 44 pack-years, with 54% identified as current smokers. At screening, the mean postbronchodilator percent predicted FEV1 was 48% (range: 14% to 87%), the mean postbronchodilator FEV1/FVC ratio was 77% (range: 6% to 88%), and the mean percent reversibility was 14% (range: 0% to 152%). Subjects received 1 inhalation of the following: BREO 100/25, BREO 200/25, fluticasone furoate/vilanterol 50 mcg/50 mcg, fluticasone furoate 100 mcg, fluticasone furoate 200 mcg, vilanterol 25 mcg, or placebo.

In Trials 1 and 2, adverse reactions (≥3% incidence and more common than placebo) reported in subjects with COPD taking BREO 100/25 (n=205) (vilanterol 25 mcg [n=408]; fluticasone furoate [n=410]; or placebo [n=412]) were: nasopharyngitis 9% (10%, 6%, 8%); upper respiratory tract infection 7% (5%, 4%, 3%); headache 7% (4%, 5%, 5%); and oropharyngeal candidiasis 5% (2%, 3%, 2%). Oropharyngeal candidiasis includes oral candidiasis, candidiasis, and fungal oropharyngitis.

6.1.2 Precautions: In 24- to 76-week trials, subjects received BREO 200/25 once daily (n=201), BREO 100/25 once daily (n=202), and fluticasone propionate 500 mcg twice daily (n=1,312) in adolescent and adult subjects with asthma. Of the 586 subjects, 59% were female and 84% were white. The mean age was 39 years; adolescents (aged 12 to 17 years) made up 16% of the population. In addition to the reactions shown for Trials 1 and 2 above, adverse reactions occurring in greater than or equal to 2% of subjects treated with BREO 200/25 included oral candidiasis, pyrexia, pharyngitis, rhinitis, arthralgia, supraventricular extrasystoles, ventricular extrasystoles, acute sinusitis, and pneumonia.

6.1.3 Postmarketing Experience: In addition to adverse reactions reported from clinical trials, the following adverse reactions have been identified during postapproval use of BREO. Because these reactions are reported voluntarily from a population of uncertain size, it is not possible to reliably estimate their frequency or establish a causal relationship to drug exposure. These events have been chosen for inclusion due to either their seriousness, frequency of reporting, or causal connection to BREO or a combination of these factors.

Cardiac Disorders: Palpitations, tachycardia.

Immunologic Disorders: Hypersensitivity reactions, including anaphylaxis, angioedema, rash, and urticaria.

Musculoskeletal and Connective Tissue Disorders: Muscle spasm.

Neurological Disorders: Hyperventilation Syndrome.

Respiratory, Thoracic, and Mediastinal Disorders: Paradoxical bronchospasm.

7. DRUG INTERACTIONS

7.1 Inhibitors of Cytochrome P450 3A4: Fluticasone furoate and vilanterol, the individual components of BREO, are both substrates of CYP3A4. Concomitant administration of the strong CYP3A4 inhibitor ketoconazole increases the systemic exposure to fluticasone furoate and vilanterol. Caution should be exercised when considering the coadministration of BREO with long-term ketoconazole and other known strong CYP3A4 inhibitors (e.g., ritonavir, clarithromycin, conivaptan, indinavir, itraconazole, lopinavir, nefazodone, nefazodone, ritonavir, telithromycin, troleandomycin [see Warnings and Precautions (5.9), Clinical Pharmacology (12.3) of full prescribing information].

7.2 Monamine Oxidase Inhibitors and Tricyclic Antidepressants: Vilanterol, like other beta-agonists, should be administered with extreme caution to patients being treated with monoamine oxidase inhibitors, tricyclic antidepressants, or drugs known to prolong the QTc interval or within 2 weeks of discontinuation of such agents, because the effect of adrenergic agonists on the cardiovascular system may be potentiated by these drugs. Caution should be exercised when considering the coadministration of BREO with long-term monamine oxidase inhibitors and other known strong CYP3A4 inhibitors (e.g., tannin, clarithromycin, conivaptan, indinavir, itraconazole, lopinavir, nefazodone, nefazodone, ritonavir, telithromycin, troleandomycin [see Warnings and Precautions (5.9), Clinical Pharmacology (12.3) of full prescribing information].

7.3 Beta-Adrenergic Receptor Blocking Agents: Beta-blockers not only block the pulmonary effect of beta-agonists, but may also produce severe bronchospasm in patients with COPD or asthma. Therefore, patients with COPD or asthma should not normally be treated with beta-blockers. However, under certain circumstances, there may be no acceptable alternatives to the use of beta-adrenergic blocking agents.
for these patients; cardioselective beta-blockers could be considered, although they should be administered with caution.

7.4 Non-Potassium-Sparing Diuretics: The electrocardiographic changes and/or hypokalemia that may result from the administration of non-potassium-sparing diuretics (such as loop or thiazide diuretics) can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Although the clinical significance of these effects is not known, caution is advised in the coadministration of beta-agonists with non-potassium-sparing diuretics.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy: Teratogenic Effects: Pregnancy Category C. There are no adequate and well-controlled trials with BREO in pregnant women. Corticosteroids and beta-agonists have been shown to be teratogenic in laboratory animals when administered systemically at relatively low dosage levels. Because animal reproduction studies are not always predictive of human response, BREO should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Women should be advised to contact their physicians if they become pregnant while taking BREO.

Fluticasone Furoate and Vilanterol: There was no evidence of teratogenic interactions between fluticasone furoate and vilanterol in rats at approximately 5 and 40 times, respectively, the maximum recommended human daily inhalation dose (MRHID) in adults (on a mcg/m² basis at maternal inhaled doses of fluticasone furoate and vilanterol, alone or in combination, up to approximately 95 mcg/kg/day). Fluticasone Furoate: There were no teratogenic effects in rats and rabbits at approximately 4 and 1 times, respectively, the MRHID in adults (on a mcg/m² basis at maternal inhaled doses up to 91 and 8 mcg/kg/day in rats and rabbits, respectively). There were no effects on perinatal and postnatal development in rats at approximately 1 time the MRHID in adults (on a mcg/m² basis at maternal doses up to 27 mcg/kg/day).

Vilanterol: There were no teratogenic effects in rats and rabbits at approximately 13,000 and 160 times, respectively, the MRHID in adults (on a mcg/m² basis at maternal inhaled doses up to 33,700 mcg/kg/day in rats and on an AUC basis at maternal inhaled doses up to 551 mcg·hr/kg/day in rabbits). However, fetal skeletal variations were observed in rabbits at approximately 1,000 times the MRHID in adults (on an AUC basis at maternal inhaled or subcutaneous doses of 5,740 or 300 mcg/kg/day, respectively). The skeletal variations included decreased or absent ossification in cervical vertebral centrum and metacarpals. There were no effects on perinatal and postnatal development in rats at approximately 3,900 times the MRHID in adults (on a mcg/m² basis at maternal oral doses up to 10,000 mcg/kg/day).

Nonteratogenic Effects: Hypoadrenalinism may occur in infants born of mothers receiving corticosteroids during pregnancy. Such infants should be carefully monitored.

8.2 Labor and Delivery: There are no adequate and well-controlled human trials that have investigated the effects of BREO during labor and delivery. Because beta-agonists may potentially interfere with uterine contractility, BREO should be used during labor only if the potential benefit justifies the potential risk.

8.3 Nursing Mothers: It is not known whether fluticasone furoate or vilanterol are excreted in human breast milk. However, other corticosteroids and beta-agonists have been detected in human milk. Since there are no data from controlled trials on the use of BREO by nursing mothers, caution should be exercised when it is administered to a nursing woman.

8.4 Pediatric Use: BREO is not indicated for use in children and adolescents. The safety and efficacy in pediatric patients (aged 17 years and younger) have not been established.

In a 24- to 76-week exacerbation trial, subjects received BREO 100/25 (n=1,099) or fluticasone furoate 100 mcg (n=1,010). Subjects had a mean age of 42 years and a history of one or more asthma exacerbations that required treatment with oral/systemic corticosteroids or emergency department visit or in-patient hospitalization for the treatment of asthma in the year prior to study entry. [See Clinical Studies (14.2) of full prescribing information.] Adolescents aged 12 to 17 years made up 14% of the study population (n=281), with a mean age of 17 years. Analysis of the data for younger subjects.

Effects on Growth: Orally inhaled corticosteroids may cause a reduction in growth velocity when administered to children and adolescents. A reduction of growth velocity in children and adolescents may occur as a result of poorly controlled asthma or from use of corticosteroids, including ICS. The effects of long-term treatment of children and adolescents with ICS, including fluticasone furoate, on final adult height are not known. [See Warnings and Precautions (5.17).] Use in Special Populations (3.4) of full prescribing information.]

8.5 Geriatric Use: Based on available data, no adjustment of the dosage of BREO in geriatric patients is necessary, but greater sensitivity in some older individuals cannot be ruled out. Clinical trials of BREO for COPD included 2,518 subjects aged 65 and older and 564 subjects aged 75 and older. Clinical trials of BREO for asthma included 854 subjects aged 65 years and older. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger subjects.

8.6 Hepatic Impairment: Fluticasone furoate systemic exposure increased by up to 3-fold in subjects with hepatic impairment compared with healthy subjects. Hepatic impairment had no effect on vilanterol systemic exposure. Use BREO with caution in patients with moderate or severe hepatic impairment. Monitor patients for corticosteroid-related side effects [see Clinical Pharmacology (12.3) of full prescribing information].

8.7 Renal Impairment: There were no significant increases in either fluticasone furoate or vilanterol exposure in subjects with severe renal impairment (Ccr less than 30 mL/min) compared with healthy subjects. No dosage adjustment is required in patients with renal impairment [see Clinical Pharmacology (12.3) of full prescribing information].

10 OVERDOSAGE

10.1 Fluticasone Furoate: No human overdose data has been reported for BREO. BREO contains both fluticasone furoate and vilanterol; therefore, the risks associated with overdose for the individual components described below apply. Treatment of overdose consists of discontinuation of BREO together with institution of appropriate symptomatic and/or supportive therapy. The judicious use of a cardioselective beta-receptor blocker may be considered, bearing in mind that such medicine can produce bronchospasm. Cardio monitoring is recommended in cases of overdose.

10.1.1 Fluticasone Furoate: Because of low systemic bioavailability (15.2%) and an absence of acute drug-related systemic findings in clinical trials, overdose of fluticasone furoate is unlikely to require any further treatment other than observation. If used at excessive doses for prolonged periods, systemic effects such as hypercorticism may occur [see Warnings and Precautions (5.4)]. Single- and repeat-dose trials of fluticasone furoate at doses of 50 to 4,000 mcg have been studied in human subjects. Decreases in mean serum cortisol were observed at doses of 500 mcg or higher given once daily for 14 days.

10.2 Vilanterol: The expected signs and symptoms with overdose of vilanterol are those of excessive beta-adrenergic stimulation and/or occurrence or exaggeration of any of the signs and symptoms of beta-adrenergic stimulation (e.g., tremors, seizures, angina, hypertension or hypotension, tachycardia with rates up to 200 beats/min, arrhythmias, nervousness, headache, tremor, muscle cramps, dry mouth, palpitation, nausea, dizziness, fatigue, malaise, insomnia, hyperglycemia, hypokalemia, metabolic acidosis). As with all inhaled sympathomimetic medicines, cardiac arrest and even death may be associated with an overdose of vilanterol.

17 PATIENT COUNSELING INFORMATION

Advise the patient to read the FDA-approved patient labeling (Medication Guide and Instructions for Use). Asthma-Related Death

Inform patients with asthma that LABA, such as vilanterol, one of the active ingredients in BREO, increase the risk of asthma-related death and may increase the risk of asthma-related hospitalization in pediatric and adolescent patients. Also inform them that currently available data are inadequate to determine whether concurrent use of ICS or other long-term asthma control drugs mitigates the increased risk of asthma-related death from LABA.

Not for Acute Symptoms:

Inform patients that BREO is not meant to relieve acute symptoms of COPD or asthma and extra doses should not be used for that purpose. Advise patients to treat acute symptoms with an inhaled, short-acting beta-agonist such as albuterol. Provide patients with such medication and instruct them in how it should be used.

Instruct patients to seek medical attention immediately if they experience any of the following: decreasing effectiveness of inhaled, short-acting beta-agonists; need for more inhalations than usual of inhaled, short-acting beta-agonists; significant decrease in lung function as outlined by the physician. Tell patients they should not stop therapy with BREO without physician/ provider guidance since symptoms may recur after discontinuation.

Do Not Use Additional Long-acting Beta-agonists:

Instruct patients not to use other LABA for COPD and asthma.

Local Effects:

Inform patients that localized infections with Candida albicans occurred in the mouth and pharynx in some patients. If oropharyngeal candidiasis develops, it should be treated with appropriate local or systemic (i.e., oral) antifungal therapy while still continuing therapy with BREO, but at times therapy with BREO may need to be temporarily interrupted under close medical supervision. Advise patients to rinse the mouth with water without swallowing after inhalation to help reduce the risk of thrush.

Pneumonia:

Patients with COPD have a higher risk of pneumonia; instruct them to contact their healthcare providers if they develop symptoms of pneumonia.

Immunosuppression:

Warn patients who are on immunosuppressant doses of corticosteroids to avoid exposure to chickenpox or measles and, if exposed, to consult their physicians without delay. Inform patients of potential worsening of existing tuberculosis; fungal, bacterial, viral, or parasitic infections; or ocular herpes simplex.

Hypercorticism and Adrenal Suppression:

Advise patients that BREO may cause systemic corticosteroid effects of hypercorticism and adrenal suppression. Additionally, inform patients that deaths due to adrenal insufficiency have occurred during and after transfer from systemic corticosteroids. Patients should taper slowly from systemic corticosteroids if transferring to BREO.

Reduction in Bone Mineral Density:

Advise patients who are at an increased risk for decreased BMD that the use of corticosteroids may pose an additional risk.

Ocular Effects:

Inform patients that long-term use of ICS may increase the risk of some eye problems (cataracts or glaucoma); consider regular eye examinations.

Risks Associated with Beta-agonist Therapy:

Inform patients of adverse effects associated with beta-agonists, such as palpitations, chest pain, rapid heart rate, tremor, or nervousness.

Hypersensitivity Reactions, including Anaphylaxis:

Advise patients that hypersensitivity reactions (e.g., anaphylaxis, angioedema, rash, urticaria) may occur after administration of BREO. Instruct patients to discontinue BREO if such reactions occur.

There have been reports of anaphylactic reactions in patients with severe milk protein allergy after inhalation of other powder medications containing lactose; patients with severe milk protein allergy should not use BREO.

BREO and ELLIPTA are registered trademarks of the GSK group of companies.

BREO ELLIPTA was developed in collaboration with Theravance.

GlaxoSmithKline
Research Triangle Park, NC 27709
©2016, the GSK group of companies. All rights reserved.
Revised 7/2016
BRE/7065

©2016 GSK group of companies. All rights reserved. Printed in USA, 80463830 November 2016
Corticosteroids reduce risks in elective extubation

BY BIANCA NOGRADY
Frontline Medical News
FROM CHEST

Prophylactic corticosteroids before elective extubation could significantly reduce postextubation stridor and the incidence of reintubation, particularly in patients at high risk of airway obstruction, suggests a systematic review and meta-analysis.

While current guidelines for the management of tracheal extubation call for prophylactic use of corticosteroids in patients with airway compromise, Akira Kuriyama, MD, of Kurashiki Central Hospital in Japan, and coauthors noted that there is an outstanding question as to which patients are most likely to benefit.

They found that the use of prophylactic corticosteroids was associated with a significant 57% reduction in the incidence of postextubation airway obstruction, laryngeal edema, or stridor, and a 58% reduction in reintubation rates, compared with placebo or no treatment.

A subgroup analysis showed that the benefit in reduction of postextubation airway events was evident only in the six trials that selected patients at high risk of airway obstruction, identified by a cuff-leak test (relative risk, 0.34), and was not seen in trials with an unselected patient population. Similarly, the reduced incidence of reintubation was evident in trials of high-risk individuals (RR, 0.35) but not in the general patient population.

The authors noted that, while the latest systematic reviews had shown that corticosteroids reduce the incidence of postextubation stridor and reintubation, only one review examined the efficacy in high-risk populations and even then, it was a pooled subgroup analysis of only three trials.

“The numbers needed to prevent one episode of postextubation airway events and reintubation in individuals at high risk for postextubation airway obstruction were 5 (95% confidence interval, 4-7) and 16 (95% CI, 8-166) respectively,” they wrote, noting that routine administration of corticosteroids before elective extubation is not recommended.

While the use of prophylactic corticosteroids was associated with few adverse events, it is reasonable to use the cuff-leak test as a screening method, and administer prophylactic steroids only to those who are at risk of developing postextubation obstruction, given our study findings.”

Two of the six trials that identified high-risk individuals used a cuff-leak volume less than 24% of tidal volume during inflation, and one used a cuff-leak volume of less than 110 mL, and one used a cuff-leak volume less than 25% of tidal volume.

“This potentially indicates that cuff-leak testing, while applied with varying cut-off values, might be able to select those at similar risk for airway obstruction and underlines the importance of screening for high-risk patients,” the authors said.

The researchers also noted that the longer patients were intubated, the lower the effect size of prophylactic corticosteroids on both postextubation airway events and reintubation.

Patients thus tended to benefit from prophylactic corticosteroids to prevent postextubation airway events and subsequent reintubation when the duration of mechanical ventilation was short, they wrote.

The authors noted that the included trials did differ in terms of populations, corticosteroid protocols, and observation periods.

However, they pointed out that the statistical heterogeneity in their primary outcome analysis was due to the risk of postextubation airway obstruction.

The authors declared no conflicts of interest.

Incompatible Type A plasma safe for resuscitation protocol

BY MICHELE G. SULLIVAN
Frontline Medical News

Hollywood, Fla. – Incompatible Type A plasma appears to be a safe and effective part of an initial resuscitation protocol for trauma patients who need a massive transfusion.

There were no increases in morbidity, mortality, or transfusion-related acute lung injury among 120 patients who received Type A plasma, compared with those who got compatible plasma, Bryan C. Morse, MD, said at the annual scientific assembly of the Eastern Association for the Surgery of Trauma.

Type AB blood products are preferred for initial transfusions for trauma patients with unknown blood type. While type AB blood products are universally acceptable to patients, they are also in short supply. In an attempt to mitigate this shortage, some trauma centers are relying on anecdotal data, much drawn from real-life combat experience dating from World War II to present times, suggesting that Type A plasma is safe for initial resuscitation protocols.

But the body of data from well-constructed trials is small, said Dr. Morse of Emory University, Atlanta. Thus, EAST sponsored this retrospective registry study, which examined outcomes in 1,536 trauma patients who received plasma transfusions as part of a massive transfusion protocol from 2012 to 2016.

The primary endpoints were overall morbidity, and mortality at four time points: 6 and 24 hours, 7 and 28 days. Eight trauma centers contributed data to the study.

The group was largely male (75%) with a mean age of 37 years. Patients were seriously injured, with a mean Injury Severity Score (ISS) of 25. About 60% suffered from blunt-force trauma. Among the entire group, 120 (8%) received incompatible Type A plasma.

About 28% of patients (434) experienced an adverse event. These were numerically but not significantly more common among the incompatible A plasma group (35% vs. 28%, P = .14). Events included acute respiratory distress syndrome (6% vs. 7.6%), thromboembolism (9% vs. 7%), pneumonia (19% vs. 15%), and acute kidney injury (8% each).

There were two cases of transfusion-related acute lung injury, both of which occurred in the compatible Type A group.

Mortality was similar at every time point: 6 hours (16% vs. 15%), 24 hours (25% vs. 22%), 7 days (35% vs. 32%), and 28 days (38% vs. 35%).

A multivariate regression model controlled for treatment center, ISS, units of packed red cells given by 4 hours, mechanism of injury, Type A plasma incompatibility, and age.

In the morbidity analysis, only ISS and units of red blood cells at 4 hours were associated with a significant increase in risk (odds ratio, 1.02). Incompatible Type A plasma did not significantly increase the risk of morbidity.

In the mortality analysis, units of red cells, ISS, and age were significantly associated with increased risk. Again, incompatible Type A plasma did not significantly increase the risk of death.

Dr. Morse had no financial declaration.

msullivan@frontlinemedcom.com
On Twitter @alz_gal
LMWH cut venous thromboembolism risk

BY MICHELE G. SULLIVAN

HOLLYWOOD, FLA. – Low-molecular-weight heparin (LMWH) decreased the risk of venous thromboembolism in trauma patients significantly more than did unfractionated heparin, a large state database review has found.

It also was associated with a 37% decrease in overall mortality, compared with unfractionated heparin, Benjamin Jacobs, MD, said at the annual scientific assembly of the Eastern Association for the Surgery of Trauma.

“Given these data, we feel that LMWH should be the preferred prophylactic agent in patients with trauma,” said Dr. Jacobs of the University of Michigan, Ann Arbor. He extracted data describing thromboembolism prophylaxis among 37,868 trauma patients included in the Michigan Trauma Quality Improvement Program from 2012 to 2014. The patients were treated at 23 hospitals around the state. They received either unfractionated or LMWH as their only clot-preventing protocol. LMWH was given at either 40 mg every day or 30 mg twice a day. The comparator was unfractionated heparin at 5,000 U either two or three times a day. The preferred method was LMWH, which 83% of patients received, compared with 17% who got the unfractionated heparin. Most patients who got LMWH received the 40 mg/day dose (70%). Most who got unfractionated heparin received 5,000 U three times a day (87%).

Both types of heparin reduced the risk of all thromboembolic outcomes, and both doses of LMWH significantly reduced the risks. However, the 40-mg/day dose was significantly more effective than the twice-daily 30-mg dose in reducing the risk of venous thromboembolism (VTE) and deep vein thrombosis (DVT). Risk reductions for pulmonary thrombosis (PT) and mortality were not significantly different between the doses.

Compared with unfractionated heparin, LMWH decreased the risk of VTE by 33%; of PT by 48%; and of DVT by 27%. It also reduced the risk of death by 37%, compared with the unfractionated type.

When Dr. Jacobs grouped the patients according to Injury Severity Score (ISS), he saw a consistently higher benefit among patients with lower scores. For example, LMWH significantly reduced the risk of PT by 59% in patients with an ISS of 5-14. In those with an ISS of 25 or higher, the drug was associated with a 20% increased risk, although that wasn’t statistically significant. There was a similar finding in DVT: LMWH reduced the risk by 18% in those with an ISS of 5-15, and by 50% among those with an score of 16-24 – both significant reductions.

Among those with an ISS of at least 25, the risk was 18% higher; although, again, it was not a significant finding. Curiously, the mortality benefit was stronger among sicker patients. The benefit was nonsignificant among those with an ISS of less than 25 but for those above 25, the mortality risk reduction was a significant 45%.

msullivan@frontlinemedcom.com
On Twitter @alz_gal

Intensive ventilation precedes lesser complications

BY AMY KARON
Frontline Medical News

A ddition of 10 cm H\textsubscript{2}O to positive end-expiratory volume (PEEP) during mechanical ventilation was followed by significantly lessened pulmonary complications in hospitalized patients who developed hypoxemia after cardiac surgery, participating in a single-center, randomized trial.

This “intensive” alveolar recruitment strategy yielded a median pulmonary complications score of 1.7 (interquartile range, 1.0-2.0), compared with 2.0 (IQR, 1.5-3.0) among patients who underwent ventilation with a PEEP of 20 cm H\textsubscript{2}O, Alcino Costa Leme, RRT, PhD, said at the International Symposium on Intensive Care and Emergency Medicine. The report was published simultaneously online March 21 in JAMA.

Intensive alveolar recruitment nearly doubled the odds of a lower pulmonary complications score (common odds ratio, 1.9; 95% confidence interval, 1.2-2.8; \(P = .003 \)), Dr. Leme and his associates reported.

The study comprised 320 adults who developed hypoxemia immediately after undergoing elective cardiac surgery at the Heart Institute (Incor) of the University of São Paulo. The median age of the patients was 62 years, and none had a history of lung disease. Pulmonary complications were scored between 0 (no signs or symptoms) and 5 (death), the investigators noted (JAMA. 2017 Mar 21. doi: 10.1001/jama.2017.2297).

The intensive alveolar recruitment strategy consisted of three 60-second cycles of lung inflation with a positive end-expiratory pressure of 30 cm

VIEW ON THE NEWS

High PEEP for all?

High PEEP “not only recruits collapsed lung tissue, but can also lead to lung overdistension. If lung collapse is extensive, as in patients with ARDS [acute respiratory distress syndrome], and maybe also in patients with postoperative ARDS, the balance between benefit (i.e., recruitment of lung tissue), and harm (i.e., lung overdistension), tips toward benefit. If there is very little lung collapse, as in critically ill patients without ARDS or patients during surgery, this balance could go in the other direction.”

The clinical trial by Leme and his colleagues “provides another brick in the evidence wall of lung protection. However, it remains unclear which patients benefit most from ventilation with a high [positive end-expiratory pressure] level.”

Ary Serpa Neto, MD, MSc, PhD, and Marcus J. Schultz, MD, PhD, are at the Academic Medical Center, Amsterdam. They reported having no conflicts of interest. These comments are from their editorial (JAMA. 2017 Mar 21. doi: 10.1001/jama.2017.3570).
TREATING PAH IS A MATTER OF URGENCY.¹
WHY WAIT TO INITIATE A PROSTACYCLIN ANALOGUE?
CULTIVATE A CONTINUUM
OF CARE WITH
THE TREPROSTINIL SYSTEM

A range of prostacyclin analogues for cohesive PAH treatment over the course of disease.²⁻⁴

START ORENITRAM EARLY—AT FC II OR III²
The only prostacyclin analogue in a tablet is the adaptable foundation of the treprostinil system²

• Turn to Tyvaso—for direct-to-the-lungs, inhaled delivery when patients require a different administration route³
• Reach for Remodulin—for the #1-prescribed parenteral PAH therapy⁵
• Return to Orenitram—for oral delivery in hemodynamically stable FC I and II Remodulin patients²

Talk to your United Therapeutics representative for more information.

SELECTED IMPORTANT SAFETY INFORMATION FOR TREPROSTINIL
• Treprostinil is a pulmonary and systemic vasodilator. Concomitant administration of treprostinil with blood pressure lowering agents, such as diuretics, antihypertensive agents, or other vasodilators, may increase the risk of symptomatic hypotension
• In patients with hepatic impairment, there is an increase in systemic exposure to treprostinil relative to patients with normal hepatic function; therefore, treprostinil dosage should be titrated slowly in these patients

Please see the complete Important Safety Information for each product on next page and the Brief Summaries of the Full Prescribing Information for each product on subsequent pages.

Orenitram, Remodulin, and Tyvaso are registered trademarks of United Therapeutics Corporation. All other registered trademarks are the property of their respective owners. The makers of these brands are not affiliated with and do not endorse United Therapeutics or its products. © 2017 United Therapeutics Corporation. All rights reserved. USP7800869 Printed in USA.
ORENITRAM® (treprostinil)
EXTENDED-RELEASE TABLETS

Indication
Orenitram is a prostacyclin vasodilator indicated for treatment of pulmonary arterial hypertension (PAH) (NYHA Class III) to improve exercise capacity. The study that established effectiveness included predominantly patients with WHO functional class II/III symptoms and etiologies of idiopathic or heritable PAH (75%) or PAH associated with connective tissue disease (19%). When used as the sole vasodilator, the effect of Orenitram on exercise is about 10% of the deficit, and the effect, if any, on a background of another vasodilator is probably less than this.

Important Safety Information for Orenitram

Contraindications
• Orenitram is contraindicated in patients with severe hepatic impairment (Child Pugh Class C).

Warnings and Precautions
• Abrupt discontinuation or sudden large reductions in dose of Orenitram may result in worsening of PAH symptoms.
• Orenitram inhibits platelet aggregation and increases the risk of bleeding.
• The Orenitram tablet size does not dissolve. In patients with diverticulosis, Orenitram tablets can lodge in a diverticulum.

Drug Interactions / Specific Populations
• Concomitant administration of Orenitram with diuretics, antihypertensive agents, or other vasodilators increases the risk of symptomatic hypotension.
• Orenitram inhibits platelet aggregation; there is an increased risk of bleeding, particularly among patients receiving anticoagulants.
• Co-administration of Orenitram and the CYP2C8 enzyme inhibitor gemfibrozil increases exposure to treprostinil; therefore, Orenitram dosage reduction may be necessary in these patients.
• Pregnancy Category C. Animal reproductive studies have shown an adverse effect on the fetus. There are no adequate and well-controlled studies in humans.
• It is not known whether treprostinil is excreted in human milk or absorbed systemically after ingestion. Because many drugs are excreted in human milk, choose Orenitram or breastfeeding.
• Safety and effectiveness in patients under 18 years of age have not been established.
• There is a marked increase in the systemic exposure to treprostinil in hepatic impaired patients.

Adverse Reactions
• In the 12-week placebo-controlled monotherapy study, adverse reactions that occurred at rates at least 3% higher on Orenitram than on placebo included headache, diarrhea, nausea, flushing, pain in jaw, pain in extremity, hypokalemia, and abdominal discomfort.

TYVASO® (treprostinil)
INHALATION SOLUTION

Indication
Tyvaso is a prostacyclin vasodilator indicated for the treatment of pulmonary arterial hypertension (PAH) (WHO Functional Group I) to diminish symptoms associated with exercise. Studies establishing effectiveness included predominantly patients with NYHA Functional Class II/IV symptoms and etiologies of idiopathic or heritable PAH (54%), or PAH associated with connective tissue disease (31%).

The effects diminish over the minimum recommended dosing interval of 4 hours; treatment timing can be adjusted for planned activities. While there are long-term data on use of treprostinil by other routes of administration, nearly all controlled clinical experience with inhaled treprostinil has been on a background of bosentan (an endothelin receptor antagonist) or sildenafil (a phosphodiesterase type 5 inhibitor). The controlled clinical experience was limited to 12 weeks in duration.

Important Safety Information for Tyvaso

Warnings and Precautions
• The efficacy of Tyvaso has not been established in patients with significant underlying lung disease (such as asthma or chronic obstructive pulmonary disease). Patients with acute pulmonary infections should be carefully monitored to detect any worsening of lung disease and loss of drug effect.
• Tyvaso may cause symptomatic hypotension.
• Titrating slowly in patients with hepatic or renal insufficiency, as exposure to treprostinil may be increased in these patients.
• Tyvaso inhibits platelet aggregation and increases the risk of bleeding, particularly in patients receiving anticoagulants.
• Co-administration of the cytochrome P450 (CYP) 2C8 enzyme inhibitor gemfibrozil may increase exposure to treprostinil. Co-administration of the CYP2C8 enzyme inducer rifampin may decrease exposure to treprostinil. Increased exposure is likely to increase adverse events, whereas decreased exposure is likely to reduce clinical effectiveness.

Drug Interactions / Specific Populations
• The concomitant use of Tyvaso with diuretics, antagonists, or other vasodilators may increase the risk of symptomatic hypotension.
• Co-administration of the CYP2C8 enzyme inhibitor gemfibrozil increases exposure to oral treprostinil.
• Co-administration of the CYP2C8 enzyme inducer rifampin decreases exposure to oral treprostinil. It is unknown if the safety and efficacy of treprostinil by the inhalation route are altered by inhibitors or inducers of CYP2C8.
• There are no adequate and well-controlled studies with Tyvaso in pregnant women. It is not known whether treprostinil is excreted in human milk.

Adverse Reactions
• The most common adverse events seen with Tyvaso in ≥4% of PAH patients and more than 3% greater than placebo in the placebo-controlled clinical study were cough (54% vs 29%), headache (31% vs 23%), throat irritation/pharyngolaryngeal pain (25% vs 14%), nausea (19% vs 16%), flushing (15% vs <1%), and syncope (4% vs <1%).

REMODULIN® (treprostinil)
INJECTION

Indication
Remodulin is a prostacyclin vasodilator indicated for the treatment of pulmonary arterial hypertension (PAH) (WHO Group I) to diminish symptoms associated with exercise. Studies establishing effectiveness included predominantly patients with NYHA Functional Class II/IV symptoms and etiologies of idiopathic or heritable PAH (38%). PAH associated with congenital systemic-to-pulmonary shunts (23%), or PAH associated with connective tissue disease (19%).

It may be administered as a continuous subcutaneous infusion or continuous intravenous infusion, however, because of the risks associated with chronic indwelling central venous catheters, including serious blood stream infections, continuous intravenous infusion should be reserved for patients who are intolerant of the subcutaneous route or in whom these risks are considered warranted.

In patients with PAH requiring transition from Flolan® (epoprostenol sodium), Remodulin is indicated to diminish the rate of clinical deterioration. The risks and benefits of each drug should be carefully considered prior to transition.

Important Safety Information for Remodulin

Warnings and Precautions
• Chronic intravenous (IV) infusions of Remodulin are delivered using an indwelling central venous catheter.
• There is a marked increase in the systemic exposure to treprostinil in hepatic impaired patients.

Drug Interactions / Specific Populations
• Remodulin is a pulmonary and systemic vasodilator. Concomitant administration of Remodulin with blood pressure lowering agents, such as diuretics, antihypertensive agents, or other vasodilators, may increase the risk of symptomatic hypotension.
• Since Remodulin inhibits platelet aggregation, there may be an increased risk of bleeding, particularly among patients receiving anticoagulants.
• Safety and effectiveness of Remodulin in pediatric patients have not been established. It is unknown if geriatric patients respond differently than younger patients. Caution should be used when selecting a dose for geriatric patients.
• There are no adequate and well-controlled studies with Remodulin in pregnant women. It is not known whether treprostinil is excreted in human milk.

Adverse Reactions
• Adverse Reactions: In clinical studies of SC Remodulin infusion, the most common adverse events reported were infusion site pain and infusion site reaction (redness and swelling). These symptoms were often severe and sometimes required treatment with narcotics or discontinuation of Remodulin.
• IV infusion of Remodulin has been associated with a risk of blood stream infections, arm swelling, paresthesias, hemolysis, and pain. Other common adverse events (≥2.5% more than placebo) seen with either SC or IV Remodulin were headache, diarrhea, nausea, jaw pain, vasodilatation, and edema.

Please see the Brief Summary of the Full Prescribing Information for Orenitram on the adjacent page and the Brief Summaries for Tyvaso and Remodulin on the subsequent pages.
Dexmedetomidine improves sedation in sepsis

BY AMY KARON
Frontline Medical News

Use of dexmedetomidine improved sedation among ventilated patients with sepsis, but did not significantly cut mortality rates or increase ventilator-free days in a multicenter, open-label randomized controlled trial. Twenty-eight days after the start of mechanical ventilation, cumulative mortality rates were 23% among patients who received dexmedetomidine and 31% among those who did not (hazard ratio, 0.7; 95% confidence interval, 0.4-1.2; P = 0.2). Yu Kawazoe, MD, PhD, and his associates reported at the International Symposium on Intensive Care and Emergency Medicine. The study was simultaneously published in JAMA.

The study may have identified a

Continued on following page

Table 1. Adverse Reactions with Rates at Least 5% Higher on Orenitram Monotherapy than on Placebo

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Orenitram (N=151)</th>
<th>Placebo (N=77)</th>
<th>Treatment (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache</td>
<td>63%</td>
<td>19%</td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>30%</td>
<td>16%</td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>30%</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>Flushing</td>
<td>15%</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td>Pain in jaw</td>
<td>11%</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>Pain in extremity</td>
<td>14%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td>Hypotension</td>
<td>9%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Abdominal discomfort</td>
<td>6%</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

Post-Marketing Experience—the following adverse reactions have been identified during post approval use of Orenitram: dizziness, dyspepsia, vomiting, myalgia, and arthralgia. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Drug Interactions—Adverse effects and include severe headache, nausea, vomiting, diarrhea, and hypotension. Treat supportively.

OVERDOSAGE—Signs and symptoms of overdose with Orenitram during clinical trial reflect a dose-limiting side effect and include severe headache, nausea, vomiting, diarrhea, and hypotension. Treat supportively.

The safety profile during this study was similar to that observed in the three pivotal studies.

Continued from previous page

clinically important benefit of dexmedetomidine – an 8% reduction in 28-day mortality – that did not demonstrate statistical significance...” wrote Dr. Kawaeo of Tohoku University Graduate School of Medicine, Sendai, Japan. “Physicians may consider an 8% difference in 28-day mortality to be clinically significant, but this study was underpowered to detect this difference.”

Dexmedetomidine is often used for sedation during ventilation, but its effects on mortality and ventilator weaning are poorly understood, the researchers noted. However, this highly selective alpha₂-adrenergic agonist has been found to suppress inflammation and to protect organs, and “can improve patients’ ability to communicate pain compared with midazolam and propofol,” the researchers wrote. Therefore, they randomly assigned 201 patients with sepsis at eight intensive care units in Japan to receive sedation with or without dexmedetomidine. Both arms received fentanyl, propofol, and midazolam, dosed to achieve Richmond Agitation-Sedation Scale (RASS) scores of 0 (calm) during the day and –2 (lightly sedated) at night (JAMA. 2017 March 21. doi: 10.1001/jama.2017.2018).

The dexmedetomidine group spent

Continued on following page

Table 1: Adverse Events in 24% of Patients Receiving TYVASO and More Frequent® than Placebo

<table>
<thead>
<tr>
<th>Adverse Event</th>
<th>TYVASO n = 115</th>
<th>Placebo n = 129</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cough</td>
<td>62 (54)</td>
<td>33 (27)</td>
</tr>
<tr>
<td>Headache</td>
<td>47 (41)</td>
<td>27 (22)</td>
</tr>
<tr>
<td>Nausea</td>
<td>22 (19)</td>
<td>13 (11)</td>
</tr>
<tr>
<td>Flushing</td>
<td>17 (15)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>Syncope</td>
<td>7 (6)</td>
<td>1 (1)</td>
</tr>
</tbody>
</table>

More than 3% greater than placebo (16.2% per 100 patient-years vs. 11.0% per 100 patient-years), threat citation (4.5% per 100 patient-years vs. 1.2% per 100 patient-years), arrhythmia (2.4 per 100 patient-years vs. 0.3 per 100 patient-years), and hemoptysis (0.3 per 100 patient-years vs. 0.1 per 100 patient-years).
A quarter of cultures were carbapenem-resistant

By Lucas Franki

Nearly one-quarter of Klebsiella pneumoniae cultures in a network of U.S. long-term acute care hospitals are resistant to carbapenem, according to Jennifer H. Han, MD, and her associates.

From a sample of 3,846 K. pneumoniae cultures taken from 64 long-term acute care hospitals in 16 states, 946, or 24.6%, of the cultures were carbapenem-resistant, and were taken from 821 patients. Just under 54% of CRKP isolates were taken from a respiratory source, with 37% coming from urine and the remaining 9.4% coming from blood. Nearly all CRKP isolates were resistant to fluoroquinolones, and 59.2% were resistant to amikacin.

Respiratory failure was the most common comorbidity, occurring in nearly 40% of patients with CRKP just over 50% of CRKP patients had a central venous catheter, and 64.8% of patients had a tracheostomy. The median age of patients with CRKP was 72.

Of the 16 states from which cultures were taken, California had the highest rate of carbapenem resistance, with 45.5% of K. pneumoniae cultures showing resistance. Other states with high rates of CRKP included South Carolina, Kentucky, and Indiana.

“Given the chronically, critically ill population, with convergence of at-risk patients from multiple facilities, future studies of optimal infection prevention strategies are urgently needed for this setting. In addition, expansion of national surveillance efforts and improved communication between [long-term acute care hospitals] and acute care hospitals will be critical for reducing the continued emergence and dissemination of CRKP across the health care continuum,” Dr. Han and her associates concluded.

Find the full story in Clinical Infections Diseases (doi: 10.1 LTACHs 093/ci/w856).
Some abnormal findings may be underemphasized

BY JENNIE SMITH
Frontline Medical News

A reporting system for lung cancer screening with low-dose computed tomography may underestimate important abnormal findings other than nodules, researchers say, potentially leading to missed malignancies.

The American College of Radiology Lung Imaging Reporting and Data System, or Lung-RADS, was introduced in 2014 to standardize reporting for low-dose CT findings and also to reduce false-negative rates, by applying tighter criteria that was used in the National Lung Screening Trial.

Lung-RADS does not have specific reporting categories for patients with isolated hilar and mediastinal adenopathy or pleural effusion in the absence of lung nodules, even though these can indicate malignancy. It does allow for the inclusion of what is called an “S” code to indicate clinically significant findings other than nodules.

In the March 2017 issue of CHEST, Hiren Mehta, MD, and his colleagues at the University of Florida in Gainesville, report on four cases from their center in which patients with these pathologies had their scans read as Lung-RADS category 1, indicating a less than 1% likelihood of malignancy. No S codes were added to their reports. Subsequent testing in these patients revealed cancers (CHEST. 2017 March;151[3]:525-26).

The four cases were:
- A 56-year-old male with hilar and mediastinal adenopathy who was recommended for repeat screening at 12 months. The patient presented 6 months later with pneumonia; biopsy revealed large cell lung cancer.
- A 76-year-old male with paratracheal lymph nodes and a solitary subcarinal lymph node. A subsequent biopsy revealed adenocarcinoma.
- A 67-year-old male whose scan showed bulky hilar and mediastinal adenopathy. Subsequent testing revealed Hodgkin’s lymphoma.
- A 75-year-old female whose scan showed a small pleural effusion and no nodules. Repeat scanning at 1 year showed enlargement of the effusion and lung adenocarcinoma. Dr. Mehta and colleagues noted in their analysis that Lung-RADS has not been studied prospectively in real practice settings and that the four cases — two of which involved delayed diagnosis — reveal “a significant limitation” of Lung-RADS.

“Based on our experience, we believe that particular caution should be exercised in reporting Lung-RADS 1 category for patients with adenopathy/pleural effusion with no lung nodules, as a majority of the lung cancer screening scans will be ordered by [primary care providers]. As] with any new system, an ongoing evaluation of the performance of Lung-RADS should be conducted so that the sensitivity and mortality benefit seen in the [National Lung Screening Trial] is not compromised.

“We strongly believe, based on our experience with these 4 cases that the new version of Lung-RADS 2.0 should [account for shortcomings of the current Lung-RADS] and have a separate category for findings that are highly suspicious for malignancy but do not have an accompanying lung nodule,” they wrote.

The investigators did not disclose outside funding or conflicts of interest related to their findings.

For more, see the article “Some abnormal findings may be underemphasized.”

Spread through air spaces portends lung SCC recurrence

BY RICHARD MARK KIRKNER
Frontline Medical News

First described in 2015, tumor spread through air spaces is a recently recognized form of invasion in lung carcinoma, but it has not been well described in lung squamous cell carcinoma. However, a study out of Memorial Sloan-Kettering Cancer Center reports spread through air spaces (STAS) is one of the most significant histologic findings in lung squamous cell carcinoma (SCC).

In multivariable models for any recurrence and lung cancer–specific death, the researchers found that STAS was a significant independent predictor for both outcomes (P = .034 and .016, respectively).

“While the study needed to be replicated in other datasets, it demonstrates the power of careful pathologic examination in predicting tumor biology: The age-old concept deserved renewed emphasis in the current era of “Omics” of various kinds.”

For more, see the article “Spread through air spaces portends lung SCC recurrence.”

Refining prognosis with careful exam

STAS (spread through air spaces) has emerged as a harbinger of poor clinical behavior in adenocarcinoma of the lung. In this new manuscript, a team from Memorial Sloan-Kettering Cancer Center demonstrates that this phenomenon is evident in squamous cell cancer of the lung as well.

A few important take-home messages are worthy of particular note in this manuscript. The first is that STAS is fairly common, present in one-third of all patients with squamous cell cancer. The second is that STAS is correlated with other known indicators of aggressive behavior such as stage, vascular and lymphatic invasion, and a high Ki-67 labeling index. The third is that STAS is not restricted to one particular histological subtype of squamous cell cancer. The fourth is that STAS is predictive of lung cancer–related recurrence and death, independent of other prognostic factors.

While the study needs to be replicated in other datasets, it demonstrates the power of careful pathologic examination in predicting tumor biology: The age-old concept deserved renewed emphasis in the current era of “Omics” of various kinds.

Sai Yendamuri, MD, is professor and chair of the department of thoracic surgery at Roswell Park Cancer Institute in Buffalo, N.Y., and is an associate medical editor for Thoracic Surgery News. He has no relevant disclosures.
colleagues said. They also dispelled the myth that STAS is an ex vivo artifact. “STAS is morphologically different from tissue floaters and contaminant or extraneous tissues that can lead to diagnostic errors,” they said.

And while the study showed that STAS is an independent predictor of recurrence and cancer-specific death, it was not predictive of overall survival—perhaps because most of the study population was over age 65 and were more likely to die from other causes rather than lung cancer. “We found a strong correlation between STAS and high-grade morphologic patterns such as nuclear size, nuclear atypia, mitotic count and Ki-67 labeling index, suggesting that STAS is associated with tumor proliferation,” Dr. Lu and coauthors said.

“Because we found STAS to show greater prognostic significance than lymphatic vascular and visceral pleural invasion,” it may be appropriate for STAS to be recorded for lung cancer specimens in pathology reports, the researchers noted.
EBUS scope, EUS-FNA similarly effective

By Deepak Chitnis
Frontline Medical News

In an assessment of a patient for lung cancer, a procedure involving the insertion of an EBUS scope in the esophagus – EUS-B-FNA – can achieve similarly accurate results as endoscopic ultrasound guided–fine-needle aspiration (EUS-FNA), according to a new study. This finding could lead patients to choose EUS-B-FNA over EUS-FNA – the standard of care for analyzing potential metastasis of the left adrenal glands (LAGs) – resulting in both time and cost savings for patients. The current standard of care involves using an EBUS scope for complete mediastinal and hilar staging of lung cancer or, if present, a tumor. This is then followed by an assessment of the LAG by conducting ultrasound guided–fine-needle aspiration with a

OFEV has demonstrated reproducible reductions in the annual rate of FVC decline in 3 clinical trials

Table

<table>
<thead>
<tr>
<th>Study</th>
<th>Adjusted Annual Rate of FVC Decline (mL/year)</th>
<th>Relative Reduction in FVC Decline</th>
<th>P-value</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPULSIS®-1</td>
<td>-240</td>
<td>52%</td>
<td><.001</td>
<td>-308, 173</td>
</tr>
<tr>
<td>OFEV (n=100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo (n=104)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPULSIS®-2</td>
<td>-114</td>
<td>45%</td>
<td><.001</td>
<td>-143, 143</td>
</tr>
<tr>
<td>OFEV (n=323)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo (n=373)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOMORROW</td>
<td>-191</td>
<td>68%</td>
<td><.001</td>
<td>-235, 27</td>
</tr>
<tr>
<td>OFEV (n=84)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo (n=83)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CI, confidence interval.

The annual rate of decline in FVC (mL/year) was analyzed using a random coefficient regression model.

IMPORTANT SAFETY INFORMATION WARNINGS AND PRECAUTIONS (CONT’D)

Elevated Liver Enzymes

- OFEV (nintedanib) was associated with elevations of liver enzymes (ALT, AST, ALKP, and GGT) and bilirubin. Liver enzyme increases were reversible with dose modification or interruption and not associated with clinical signs or symptoms of liver injury. The majority (94%) of patients with ALT and/or AST elevations had elevations <5 times ULN. The majority (95%) of patients with bilirubin elevations had elevations <2 times ULN.
- Conduct liver function tests prior to treatment, monthly for 3 months, and every 3 months thereafter, and as clinically indicated. Monitor for adverse reactions and consider dosage modifications, interruption, or discontinuation as necessary for liver enzyme elevations.

Gastrointestinal Disorders

Diarrhea

- Diarrhea was the most frequent gastrointestinal event reported in 62% versus 18% of patients treated with OFEV and placebo, respectively. Events were primarily mild to moderate intensity and occurred within the first 3 months. Diarrhea led to permanent dose reduction in 11% and discontinuation in 5% of OFEV patients versus 0 and <1% in placebo patients, respectively.
- Dosage modifications or treatment interruptions may be necessary in patients with diarrhea. Treat diarrhea at first signs with adequate hydration and antidiarrheal medication (e.g., loperamide), and consider treatment interruption if diarrhea continues. OFEV treatment may be resumed at the full dosage (150 mg twice daily), or at the reduced dosage (100 mg twice daily), which subsequently may be increased to the full dosage. If severe diarrhea persists, discontinue treatment.

Nausea and Vomiting

- Nausea was reported in 24% versus 7% and vomiting was reported in 12% versus 3% of patients treated with OFEV and placebo, respectively. Events were primarily mild to moderate intensity. Nausea and vomiting led to discontinuation of OFEV in 2% and 1% of patients, respectively.
- If nausea or vomiting persists despite appropriate supportive care including anti-emetic therapy, consider dose reduction or treatment interruption. OFEV treatment may be resumed at full dosage or at reduced dosage, which subsequently may be increased to full dosage. If severe nausea or vomiting does not resolve, discontinue treatment.

Embryofetal Toxicity: OFEV can cause fetal harm when administered to a pregnant woman and patients should be advised of the potential risk to a fetus. Women should be advised to avoid becoming pregnant while receiving OFEV and to use effective contraception during treatment and at least 3 months after the last dose of OFEV. Verify pregnancy status prior to starting OFEV.
Arterial Thromboembolic Events: Arterial thromboembolic events were reported in 2.5% of OFEV and 0.8% of placebo patients, respectively. Myocardial infarction was the most common arterial thromboembolic event, occurring in 1.5% of OFEV and 0.4% of placebo patients. Use caution when treating patients at higher cardiovascular risk including known coronary artery disease. Consider treatment interruption in patients who develop signs or symptoms of acute myocardial ischemia.

- Similar results were observed in INPULSIS®-2.
- Lung function improvement is defined as a ≤0% decline in predicted FVC at 52 weeks, meaning patients' predicted FVC increased from baseline.

LESS THAN ONE-THIRD OF PATIENTS ON OFEV HAD A MEANINGFUL DECLINE IN LUNG FUNCTION IN THE INPULSIS® TRIALS

INPULSIS®-1,3

<table>
<thead>
<tr>
<th>% Predicted FVC Decline (Change)</th>
<th>Patients with Improvement</th>
<th>Patients with ≥10% Decline</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥10%</td>
<td>33%</td>
<td>14%</td>
</tr>
<tr>
<td>≤0%</td>
<td>67%</td>
<td>12%</td>
</tr>
</tbody>
</table>

More patients had improved lung function with OFEV than with placebo in the INPULSIS® trials.

INPULSIS®-2,4-6

<table>
<thead>
<tr>
<th>% Predicted FVC Decline (Change)</th>
<th>Patients with Improvement</th>
<th>Patients with ≥10% Decline</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥10%</td>
<td>33%</td>
<td>14%</td>
</tr>
<tr>
<td>≤0%</td>
<td>67%</td>
<td>12%</td>
</tr>
</tbody>
</table>

According to American Thoracic Society (ATS) guidelines, ≥10% FVC decline is an established measure of IPF disease progression and a surrogate marker in mortality.

In INPULSIS® trials, there was not a statistically significant difference in all-cause mortality for OFEV compared with placebo.

IMPORTANT SAFETY INFORMATION
WARNINGS AND PRECAUTIONS (CONT’D)

Arterial Thromboembolic Events: Arterial thromboembolic events were reported in 2.5% of OFEV and 0.8% of placebo patients, respectively. Myocardial infarction was the most common arterial thromboembolic event, occurring in 1.5% of OFEV and 0.4% of placebo patients. Use caution when treating patients at higher cardiovascular risk including known coronary artery disease. Consider treatment interruption in patients who develop signs or symptoms of acute myocardial ischemia.

Please see additional Important Safety Information and brief summary for OFEV on the following pages.
ultimately had lung cancer.

Subjects first received complete mediastinal and hilar staging of lung cancer and any present tumors via an EBUS and EUS-B procedure. Following an EBUS examination of the mediastinum, the EBUS scope was retracted from the trachea and positioned into the esophagus for an examination of the mediastinal nodes. Then, the EBUS scope was advanced into the stomach for identification of the LAG. Afterward, the routine EUS-FNA was performed. LAG analysis across both methods involved visualizing the LAG and collecting an adequate tissue sample for testing.

“In short, in order to locate the LAG, a structured three step approach was used according to the EUS assessment tool (EUS-AT): identification of the liver, the abdominal aorta, coeliac trunk, left kidney, and LAG,” the authors noted.

By turning the EBUS scope clockwise from the liver, the abdominal aorta and coeliac trunk are identified. By subsequently turning the EBUS scope gently in caudal direction, the left kidney and LAG are identified.”

Endoscopists then evaluated both procedures in each subject according to feasibility and practicability to determine if the findings of the experimental procedure were us-

OFEV is only available through participating specialty pharmacies

TO GET YOUR APPROPRIATE PATIENTS WITH IPF STARTED ON OFEV:

CONDUCT liver function tests (ALT, AST, and bilirubin) prior to initiating treatment with OFEV (nintedanib)

COMPLETE the OFEV Prescription Form—available at www.OFEVhcp.com—and fax it to one of the participating specialty pharmacies

OFFER enrollment in OPEN DOORS™, a patient support program for patients receiving OFEV

IMPORTANT SAFETY INFORMATION WARNINGS AND PRECAUTIONS (CONT’D)

Risk of Bleeding: OFEV may increase the risk of bleeding. Bleeding events were reported in 10% of OFEV versus 7% of placebo patients. Use OFEV in patients with known risk of bleeding only if the anticipated benefit outweighs the potential risk.

Gastrointestinal Perforation: OFEV may increase the risk of gastrointestinal perforation. Gastrointestinal perforation was reported in 0.3% of OFEV versus in 0% placebo patients. Use caution when treating patients who have had recent abdominal surgery. Discontinue therapy with OFEV in patients who develop gastrointestinal perforation. Only use OFEV in patients with known risk of gastrointestinal perforation if the anticipated benefit outweighs the potential risk.

ADVERSE REACTIONS

• Adverse reactions reported in ≥5% of OFEV patients included diarrhea, nausea, abdominal pain, liver enzyme elevation, vomiting, decreased appetite, weight decreased, headache, and hypertension.

• The most frequent serious adverse reactions reported in OFEV patients were bronchitis and myocardial infarction. The most common adverse events leading to death in OFEV patients versus placebo were pneumonia (0.7% vs. 0.6%), lung neoplasm malignant (0.3% vs. 0%), and myocardial infarction (0.3% vs. 0%). In the predefined category of major adverse cardiovascular events (MACE) including MI, fatal events were reported in 0.6% of OFEV versus 1.8% in placebo patients.

Please see accompanying brief summary of Prescribing Information, including Patient Information.

References:

Copyright ©2016, Boehringer Ingelheim Pharmaceuticals, Inc. All rights reserved. (06/16) PC-OF-0473-PRDF
able. Finally, a cytologic exam was conducted, using Giemsa or Papani-
colau staining to determine if any previous cancer had metastasized, and a
final diagnosis was made.

LAG analysis had a success rate of
89% (39/44; 95% confidence interval, 76%-99%) for EUS-FNA, compared
with 93% (41/44; 95% CI, 82%-98%) for EUS-FNA. Similarly, when looking
at the rate of sensitivity for LAG me-
tastases, EUS-B had a rate of sensitivi-
ty for LAG metastases of at least 87%
(95% CI, 65%-97%), while EUS-FNA was
found to be at least 83% (95% CI, 62%-92%). Endoscopists were equally satis-
fied with both procedures in the "majority of cases in this study.

"In [five] cases (11%), the EUS-B
FNA procedure was unsuccessful, due
to the inability to make good contact
of the ultrasound transducer and the
stomach wall," the authors explained.

"The conventional EUS scope is more
stable as a result of the increased tube
 diameter. Another advantage of the
conventional echo-endoscope is its
widder scanning angle. ... The conven-
tional EUS scope is also longer than
the EBUS scope, [but that] does not
seem to be the limiting factor."

No funding source was disclosed
for this study. The authors reported
no relevant financial disclosures.
A comprehensive lung cancer screening program carried out at Veterans Health Administration hospitals was taxing to implement and revealed a large number of patients with results requiring follow-up, though only 1.5% had cancers.

Approximately 98% of the eligible patients consented, and 2,106 underwent screening with low-dose computed tomography (LDCT) scans. The mean age of patients was 65 years, and 96% of patients were male. Nearly 60% of patients screened (1,257) had nodules, 1,184 patients (56.2%) required tracking, and 31 patients (1.5%) had lung cancer. The pilot study was developed in response to a 2013 recommendation from the U.S. Preventive Services Task Force favoring annual screening with LDCT scans in current or former heavy smokers between 55 and 80 years old. The recommendation sparked concerns about the practicability of implementing large-scale lung cancer screening, which Dr. Kinsinger and her colleagues’ study seemed to underscore. For example, “creating electronic tools to capture the necessary clinical data in real time … proved to be difficult, even with the VHA’s highly regarded electronic medical record,” the investigators wrote. A key measure used in the screening program – cigarette pack-years – was “not fully captured” in the system’s EMR.

The investigators also noted that, if the eligibility criteria used in the pilot program were applied to the VHA nationwide, about 900,000 patients would be eligible for LDCT scan screening, and that fewer than 60% of patients in this study had consented. That meant that “accurately identifying these patients and discussing with them the benefits and harms of [screening] will take significant effort for primary care teams,” they wrote. Additionally, the required follow-up “may stress the capacity” of radiology and pulmonology services, they said. Finally, “primary care will need to be involved in deciding which incidental findings need further evaluation. These clinical efforts will require coordination and communication among clinical services and between patients and staff, and dedicated coordinators will need to be hired,” the investigators said.

The authors noted that their findings might not be generalizable to non-VHA health care systems. The experience of the VHA, “owing to its central organizational structure, may represent a best-case scenario,” they wrote. The Veterans Health Administration funded the study. Two of its coauthors reported commercial conflicts of interest; one of those disclosed a grant application to the Bristol-Myers Squibb Foundation related to the screening,

use of P-gp and CYP3A4 inducers (e.g., carbamazepine, phenytoin, and St. John’s wort) with OFEV should be avoided as these drugs may decrease exposure to nintedanib. Anticoagulation treatment as necessary (see Warnings and Precautions).

INFORMATION ON THE PRESCRIBING OF OFEV
Lung cancer screening a challenge to implement

Pregnancy: Risk Summary: Based on findings from animal studies and its mechanism of action, OFEV can cause fetal harm when administered to a pregnant woman and may reduce fertility in females of reproductive potential (see Use in Specific Populations). Counsel patients on pregnancy prevention and planning. Pregnancy Testing: Verify the pregnancy status of females of reproductive potential prior to treatment with OFEV (see Dosage and Administration, Warnings and Precautions and Use in Specific Populations). Contraception: Advise females of reproductive potential to avoid becoming pregnant while receiving treatment with OFEV. Advise females of reproductive potential to use effective contraception during treatment, and for at least 3 months after taking the last dose of OFEV. (see Data). Based on animal data, OFEV may reduce fertility in females of reproductive potential.

Renal Impairment: Patients with renal impairment (including dialysis patients) should be administered to a pregnant woman. There are no data

use of P-gp and CYP3A4 inducers (e.g., carbamazepine, phenytoin, and St. John’s wort) with OFEV should be avoided as these drugs may decrease exposure to nintedanib. Anticoagulation treatment as necessary (see Warnings and Precautions).

INFORMATION ON THE PRESCRIBING OF OFEV
Lung cancer screening a challenge to implement

Pregnancy: Risk Summary: Based on findings from animal studies and its mechanism of action, OFEV can cause fetal harm when administered to a pregnant woman and may reduce fertility in females of reproductive potential (see Use in Specific Populations). Counsel patients on pregnancy prevention and planning. Pregnancy Testing: Verify the pregnancy status of females of reproductive potential prior to treatment with OFEV (see Dosage and Administration, Warnings and Precautions and Use in Specific Populations). Contraception: Advise females of reproductive potential to avoid becoming pregnant while receiving treatment with OFEV. Advise females of reproductive potential to use effective contraception during treatment, and for at least 3 months after taking the last dose of OFEV. (see Data). Based on animal data, OFEV may reduce fertility in females of reproductive potential.

Renal Impairment: Patients with renal impairment (including dialysis patients) should be administered to a pregnant woman. There are no data

use of P-gp and CYP3A4 inducers (e.g., carbamazepine, phenytoin, and St. John’s wort) with OFEV should be avoided as these drugs may decrease exposure to nintedanib. Anticoagulation treatment as necessary (see Warnings and Precautions).

INFORMATION ON THE PRESCRIBING OF OFEV
Lung cancer screening a challenge to implement

Pregnancy: Risk Summary: Based on findings from animal studies and its mechanism of action, OFEV can cause fetal harm when administered to a pregnant woman and may reduce fertility in females of reproductive potential (see Use in Specific Populations). Counsel patients on pregnancy prevention and planning. Pregnancy Testing: Verify the pregnancy status of females of reproductive potential prior to treatment with OFEV (see Dosage and Administration, Warnings and Precautions and Use in Specific Populations). Contraception: Advise females of reproductive potential to avoid becoming pregnant while receiving treatment with OFEV. Advise females of reproductive potential to use effective contraception during treatment, and for at least 3 months after taking the last dose of OFEV. (see Data). Based on animal data, OFEV may reduce fertility in females of reproductive potential.

Renal Impairment: Patients with renal impairment (including dialysis patients) should be administered to a pregnant woman. There are no data

use of P-gp and CYP3A4 inducers (e.g., carbamazepine, phenytoin, and St. John’s wort) with OFEV should be avoided as these drugs may decrease exposure to nintedanib. Anticoagulation treatment as necessary (see Warnings and Precautions).

INFORMATION ON THE PRESCRIBING OF OFEV
Lung cancer screening a challenge to implement

Pregnancy: Risk Summary: Based on findings from animal studies and its mechanism of action, OFEV can cause fetal harm when administered to a pregnant woman and may reduce fertility in females of reproductive potential (see Use in Specific Populations). Counsel patients on pregnancy prevention and planning. Pregnancy Testing: Verify the pregnancy status of females of reproductive potential prior to treatment with OFEV (see Dosage and Administration, Warnings and Precautions and Use in Specific Populations). Contraception: Advise females of reproductive potential to avoid becoming pregnant while receiving treatment with OFEV. Advise females of reproductive potential to use effective contraception during treatment, and for at least 3 months after taking the last dose of OFEV. (see Data). Based on animal data, OFEV may reduce fertility in females of reproductive potential.

Renal Impairment: Patients with renal impairment (including dialysis patients) should be administered to a pregnant woman. There are no data

use of P-gp and CYP3A4 inducers (e.g., carbamazepine, phenytoin, and St. John’s wort) with OFEV should be avoided as these drugs may decrease exposure to nintedanib. Anticoagulation treatment as necessary (see Warnings and Precautions).

INFORMATION ON THE PRESCRIBING OF OFEV
Lung cancer screening a challenge to implement

Pregnancy: Risk Summary: Based on findings from animal studies and its mechanism of action, OFEV can cause fetal harm when administered to a pregnant woman and may reduce fertility in females of reproductive potential (see Use in Specific Populations). Counsel patients on pregnancy prevention and planning. Pregnancy Testing: Verify the pregnancy status of females of reproductive potential prior to treatment with OFEV (see Dosage and Administration, Warnings and Precautions and Use in Specific Populations). Contraception: Advise females of reproductive potential to avoid becoming pregnant while receiving treatment with OFEV. Advise females of reproductive potential to use effective contraception during treatment, and for at least 3 months after taking the last dose of OFEV. (see Data). Based on animal data, OFEV may reduce fertility in females of reproductive potential.
Bill would limit noneconomic damages to $250,000

BY ALICIA GALLEGOS
Frontline Medical News

ew legislation headed to the House floor could mean legal relief for health providers in the form of capped damages and a tighter time frame for lawsuits.

The House Judiciary Committee passed the Protecting Access to Care Act of 2017 (H.R. 1215) in February by a vote of 18-17. The bill, modeled after California’s Medical Injury Compensation Reform Act (MICRA), would limit noneconomic damages in medical malpractice cases to $250,000, restrict contingency fees charged by attorneys, and enforce a 3-year statute of limitations for liability lawsuits from the date of alleged injury. The bill also includes a “fair share” rule in which defendants are liable only for the damages in direct proportion to their percentage of responsibility.

The bill is the first significant medical professional liability reform legislation to be approved by the committee since 2011, said Brian K. Atchinson, president and CEO of PIAA, a national trade association for medical liability insurers.

“Unlike previous federal bills, the bill is focused solely on health care professionals and entities, includes detailed flexibility for states for all its reforms, and is linked with the expenditure of federal dollars to address states’ rights concerns,” Mr. Atchinson said in a statement. “H.R. 1215 will help ensure fair and timely compensation to injured patients, improve access to patient care, and promote affordable and accessible medical liability insurance coverage.”

The proposed statute would apply to any patient who receives medical care provided via a federal program, such as Medicare or Medicaid, or via a subsidy or tax benefit, such as coverage purchased under the Affordable Care Act or a future replacement. Medical care paid by employer health plans would fall under the legislation’s umbrella since insurance premiums receive federal tax exemptions. The bill would not preempt state medical malpractice laws that impose damage caps, whether higher or lower than $250,000, nor would the legislation affect the availability of economic damages, according to bill language.

As part of the H.R. 1215, courts could limit how much attorneys receive from a patient’s ultimate award. Specifically, courts would have the power to restrict payments from a plaintiff’s damage recovery to an attorney who claims a financial stake in the outcome by virtue of a contingent fee.

If enacted, the bill would work to reduce the practice of defensive medicine and save taxpayer dollars, while increasing access to health care, said House Judiciary Committee Chair Bob Goodlatte (R-Va.).

“The Protecting Access to Care Act will help keep the rising costs of health care from being passed along to the American people,” Rep. Goodlatte said in a statement. “The Congressional Budget Office estimates that the reforms contained in the bill would lower health care costs by tens of billions of dollars.”

Public Citizen, a consumer rights group, criticized the legislation as misleading to consumers and harmful to patients.

“Proposals to shield providers from liability are nothing but a giveaway to industry,” Lisa Gilbert, director of Public Citizen’s Congress Watch, said in a statement. “Members supporting this bill would further harm those who are suffering from doctors’ mistakes and abandon the GOP’s supposedly unwavering commitment to state’s rights.”

Jeffrey Segal, MD, a neurosurgeon and attorney, said the bill faces an uphill climb and may not make it very far. The question is whether the legislation can pass via the budget reconciliation process (requiring only a simple majority in the Senate) or whether it would be presented outside of that process and would need 60 votes, he said in an interview.

“There are so many moving parts to this bill, I think the likelihood of its being passed as is is low,” said Dr. Segal, founder of Medical Justice, a company that works to deter frivolous medical malpractice lawsuits. “The biggest challenge will be whether the Republicans have to get eight Democratic senators to join the bill. To make it more palatable, something will need to give. Such provisions on tort reform are likely to be the first items offered for sacrifice.”

agallegos@frontlinemedcom.com
On Twitter @legal_med

House leaders ‘came up short’ in effort to kill Obamacare

BY MARY AGNES CAREY, KAISER HEALTH NEWS

Despite days of intense negotiations and last-minute concessions to win over waver ing GOP conservatives and moderates, House Republican leaders failed to secure enough support to pass their plan to repeal and replace the Affordable Care Act.

House Speaker Paul Ryan pulled the bill from consideration after he rushed to the White House to tell President Donald Trump that there weren’t the 216 votes necessary for passage.

“We came really close today, but we came up short,” he told reporters at a hastily called news conference.

When pressed about what happens to the federal health law, he added, “Obamacare is the law of the land. We’re going to be living with Obamacare for the foreseeable future.”

President Trump laid the blame at the feet of Democrats, complaining that not one was willing to help Republicans on the measure, and he warned again that the Obamacare insurance markets are in serious danger. “Bad things are going to happen to Obamacare,” he told reporters at the White House. “There’s not much you can do to help it. I’ve been saying that for a year and a half. I said, look, eventually, it’s not sustainable. The insurance companies are leaving.”

But he said the collapse of the bill might allow Republicans and Democrats to work on a replacement. “I honestly believe the Democrats will come to us and say, ‘Look, let’s get together and get a great health care bill or plan that’s really great for the people of our country,’” he said.

Rep. Ryan originally had hoped to hold a floor vote on the measure March 23 – timed to coincide with the 7th anniversary of the ACA – but decided to delay that effort because GOP leaders didn’t have enough “yes” votes. The House was in session March 24, before his announcement, while members debated the bill.

House Democratic leader Nancy Pelosi (Calif.) said the speaker’s decision to pull the bill “is pretty exciting for us … a victory for the Affordable Care Act, more importantly for the American people.”

The legislation was damaged by a variety of issues raised by competing factions of the party. Many members were nervous about reports by the Congressional Budget Office showing that the bill would lead eventually to 24 million people losing insurance, while some moderate Republicans worried that ending the ACA’s Medicaid expansion would hurt low-income Americans.

At the same time, conservatives, especially the hard-right House Freedom Caucus that often has needled party leaders, complained that the bill kept too much of the ACA structure in place. They wanted a straight repeal of Obamacare, but party leaders said that couldn’t pass the Senate, where Republicans don’t have enough votes to stop a filibuster.

They were hoping to use a complicated legislative strategy called budget reconciliation that would allow them to repeal parts of the ACA that affect only federal spending.

The decision came after a chaotic week of negotiations, as party leaders sought to woo more conservatives. The president lobbied 120 members through personal meetings or phone calls, according to a count provided by his spokesman, Sean Spicer. “The president and the team here have left everything on the field,” Mr. Spicer said.

On the evening of March 23, Mr. Trump dispatched Office of Management and Budget Director Mick Mulvaney to tell his former House GOP colleagues that the president wanted a vote on March 24. It was time to move on to other priorities, including tax reform, he told House Republicans.

He said the president needs this; the president has said he wants a vote tomorrow, up or down. If for any reason it goes down, we’re just going to move forward with additional parts of his agenda. This is our

Continued on page 36
BEVESPI AEROSPHERE

(glycopyrrolate 9 mcg/
formoterol fumarate 4.8 mcg)
Inhalation Aerosol

BEVESPI AEROSPHERE is indicated for the maintenance treatment of COPD. It is not indicated for the relief of acute bronchospasm or for the treatment of asthma.

Please see additional Important Safety Information and Brief Summary of Prescribing Information, including Boxed WARNING, on the adjacent pages.

IMPORTANT SAFETY INFORMATION, INCLUDING BOXED WARNING

WARNING: Long-acting beta₂-adrenergic agonists (LABAs), such as formoterol fumarate, one of the active ingredients in BEVESPI AEROSPHERE, increase the risk of asthma-related death. A placebo-controlled trial with another LABA (salmeterol) showed an increase in asthma-related deaths in subjects receiving salmeterol. This finding with salmeterol is considered a class effect of all LABAs, including formoterol fumarate.

The safety and efficacy of BEVESPI AEROSPHERE in patients with asthma have not been established. BEVESPI AEROSPHERE is not indicated for the treatment of asthma.

CONTRAINDICATION: All LABAs are contraindicated in patients with asthma without use of a long-term asthma control medication. BEVESPI is contraindicated in patients with a hypersensitivity to glycopyrrolate, formoterol fumarate, or to any component of the product.

WARNINGS AND PRECAUTIONS

- BEVESPI should not be initiated in patients with acutely deteriorating COPD, which may be a lifethreatening condition.
- BEVESPI should not be used for the relief of acute symptoms (ie, as rescue therapy for the treatment of acute episodes of bronchospasm). Acute symptoms should be treated with an inhaled short-acting beta₂-agonist.
- BEVESPI should not be used more often or at higher doses than recommended, or with other LABAs, as an overdose may result.
- If paradoxical bronchospasm occurs, discontinue BEVESPI immediately and institute alternative therapy.
- If immediate hypersensitivity reactions, including angioedema, urticaria, or skin rash, occur, discontinue BEVESPI at once and consider alternative treatment.
- BEVESPI can produce a clinically significant cardiovascular effect in some patients, as measured by increases in pulse rate, blood pressure, or symptoms. If such effects occur, BEVESPI may need to be discontinued.
- Use with caution in patients with convulsive disorders, thyrotoxicosis, diabetes mellitus, ketoacidosis, and in patients who are unusually responsive to sympathomimetic amines.
- Be alert to hypokalemia and hyperglycemia.
- Worsening of narrow-angle glaucoma or urinary retention may occur. Use with caution in patients with narrow-angle glaucoma, prostatic hyperplasia, or bladder-neck obstruction and instruct patients to contact a physician immediately if symptoms occur.

ADVERSE REACTIONS: The most common adverse reactions with BEVESPI (≥2% and more common than
placebo) were: cough, 4.0% (2.7%), and urinary tract infection, 2.6% (2.3%).

DRUG INTERACTIONS
• Use caution if administering additional adrenergic drugs because the sympathetic effects of formoterol may be potentiated
• Concomitant treatment with xanthine derivatives, steroids, or diuretics may potentiate any hypokalemic effect of formoterol
• Use with caution in patients taking non-potassium-sparing diuretics, as the ECG changes and/or hypokalemia may worsen with concomitant beta-agonists
• The action of adrenergic agonists on the cardiovascular system may be potentiated by monoamine oxidase inhibitors, tricyclic antidepressants, or other drugs known to prolong the QTc interval. Therefore BEVESPI should be used with extreme caution in patients being treated with these agents

You are encouraged to report negative side effects of prescription drugs to the FDA. Visit www.FDA.gov/medwatch or call 1-800-FDA-1088.

Demonstrated in two 24-week efficacy and safety studies in patients with moderate to very severe COPD (n=3699). The primary endpoint was change from baseline in trough FEV$_1$ at Week 24 for BEVESPI AEROSPHERE compared with placebo (150 mL), glycopyrrolate 18 mcg BID (59 mL), and formoterol fumarate 9.6 mcg BID (64 mL); results are from Trial 1; $P<0.0001$ for all treatment comparisons.1,2 Statistically significant results were also seen in Trial 2.3

AstraZeneca
BEVESPI AEROSPHERE is a registered trademark and CO-SUSPENSION is a trademark of the AstraZeneca group of companies. ©2017 AstraZeneca. All rights reserved. 3323709 1/17
BEVESPI AEROSPHERE™ (glycopyrrolate and formoterol fumarate) inhalation aerosol, for oral inhalation use

Brief Summary of Prescribing Information. For complete prescribing information consult official package insert.

WARNING: ASTHMA-RELATED DEATH

Long-acting beta-2-adrenergic agonists (LABAs) increase the risk of asthma-related death. Data from a large placebo-controlled US trial that compared the safety of another LABA (salmeterol) with placebo added to usual asthma therapy showed an increase in asthma-related deaths in subjects receiving salmeterol. This finding with salmeterol is considered a class effect of all LABAs, including formoterol fumarate, one of the active ingredients in BEVESPI AEROSPHERE.

The safety and efficacy of BEVESPI AEROSPHERE in patients with asthma have not been established. BEVESPI AEROSPHERE is not indicated for the treatment of asthma. [See Warnings and Precautions (5.1) in the full Prescribing Information]

INDICATIONS AND USAGE

BEVESPI AEROSPHERE is a combination of glycopyrrolate and formoterol fumarate indicated for the long-term, maintenance treatment of airway obstruction in patients with chronic obstructive pulmonary disease (COPD), including chronic bronchitis and/or emphysema.

Important Limitation of Use: BEVESPI AEROSPHERE is not indicated for the relief of acute bronchospasm or for the treatment of asthma [see Warnings and Precautions (5.1) in the full Prescribing Information].

DOSAGE AND ADMINISTRATION

BEVESPI AEROSPHERE (glycopyrrolate/formoterol fumarate 9 mcg/4.8 mcg) should be administered as two inhalations taken twice daily in the morning and in the evening by the orally inhaled route only. Do not take more than two inhalations twice daily.

BEVESPI AEROSPHERE contains 120 inhalations per canister. The canister has an attached dose indicator, which indicates how many inhalations remain. The dose indicator display will move after every tenth actuation. When nearing the end of the usable inhalations, the color behind the number in the dose indicator display window changes to red. BEVESPI AEROSPHERE should be discarded when the dose indicator display window shows zero.

Prime BEVESPI AEROSPHERE is essential to ensure appropriate drug content in each actuation. Prime BEVESPI AEROSPHERE before using for the first time. To prime BEVESPI AEROSPHERE, release 4 sprays into the air away from the face, shaking well before each spray. BEVESPI AEROSPHERE must be re-primed when the inhaler has not been used for more than 7 days. To re-prime BEVESPI AEROSPHERE, release 2 sprays into the air away from the face, shaking well before each spray.

CONTRAINDICATIONS

All LABAs are contraindicated in patients with asthma without use of a long-term asthma control medication [see Warnings and Precautions (5.1) in the full Prescribing Information]. BEVESPI AEROSPHERE is not indicated for the treatment of asthma. BEVESPI AEROSPHERE is contraindicated in patients with hypersensitivity to glycopyrrolate, formoterol fumarate, or to any component of the product [see Warnings and Precautions (5.5) in the full Prescribing Information].

WARNINGS AND PRECAUTIONS

Asthma-Related Death

Data from a large placebo-controlled trial in subjects with asthma showed that LABAs may increase the risk of asthma-related death. Data are not available to determine whether the rate of death in patients with COPD is increased by LABAs.

A 28-week, placebo-controlled US trial comparing the safety of another LABA (salmeterol) with placebo, each added to usual asthma therapy, showed an increase in asthma-related deaths in subjects receiving salmeterol (13/13,176 in subjects treated with salmeterol vs. 3/13,179 in subjects treated with placebo; RR 4.37, 95% CI: 1.25, 15.34). The increased risk of asthma-related death is considered a class effect of LABAs, including formoterol fumarate, one of the active ingredients in BEVESPI AEROSPHERE.

No trial adequate to determine whether the rate of asthma-related deaths is increased in patients treated with BEVESPI AEROSPHERE has been conducted. The safety and efficacy of BEVESPI AEROSPHERE in patients with asthma have not been established. BEVESPI AEROSPHERE is not indicated for the treatment of asthma.

Deterioration of Disease and Acute Episodes

BEVESPI AEROSPHERE should not be initiated in patients with acutely deteriorating COPD, which may be a life-threatening condition. BEVESPI AEROSPHERE has not been studied in patients with acutely deteriorating COPD. The use of BEVESPI AEROSPHERE in the acutely deteriorating patient is inappropriate.

When beginning BEVESPI AEROSPHERE, patients who have been taking inhaled, short-acting beta-agonists on a regular basis (e.g., four times a day) should be instructed to discontinue the regular use of these medications. Patients using BEVESPI AEROSPHERE should not use another medication containing a LABA for any reason [see Drug Interactions (7.1) in the full Prescribing Information].

Paradoxical Bronchospasm

As with other inhaled medications, BEVESPI AEROSPHERE can produce paradoxical bronchospasm, which may be life-threatening. If paradoxical bronchospasm occurs during dosing with BEVESPI AEROSPHERE, it should be treated immediately with an inhaled, short-acting bronchodilator, BEVESPI AEROSPHERE should be discontinued immediately, and alternative therapy should be instituted.

Immediate Hypersensitivity Reactions

Immediate hypersensitivity reactions have been reported after administration of glycopyrrolate or formoterol fumarate, the components of BEVESPI AEROSPHERE. If signs suggesting allergic reactions occur, in particular, angioedema (including difficulties in breathing or swallowing, swelling of tongue, lips and face), urticaria, or skin rash, BEVESPI AEROSPHERE should be stopped at once and alternative treatment should be considered.

Cardiovascular Effects

Formoterol fumarate, like other beta-agonists, can produce a clinically significant cardiovascular effect in some patients as measured by increases in pulse rate, systolic or diastolic blood pressure, or symptoms [see Clinical Pharmacology (12.2) in the full Prescribing Information]. If such effects occur, BEVESPI AEROSPHERE may need to be discontinued. In addition, beta-agonists have been reported to produce electrocardiographic changes, such as flattening of the T wave, prolongation of the QT interval, and ST segment depression, although the clinical significance of these findings is unknown.

Therefore, BEVESPI AEROSPHERE should be used with caution in patients with cardiovascular disorders, especially coronary insufficiency, cardiac arrhythmias, and hypertension.

Coexisting Conditions

BEVESPI AEROSPHERE, like all medications containing sympathomimetic amines, should be used with caution in patients with convulsive disorders or thyrotoxicosis and in those who are unusually responsive to sympathomimetic amines. Doses of the related beta-agonist albuterol, when administered intravenously, have been reported to aggravate pre-existing diabetes mellitus and ketoadicosis.

Hypokalemia and Hyperglycemia

Beta-agonist medications may produce significant hypokalemia in some patients, possibly through intracellular shunting, which has the potential to produce adverse cardiovascular effects [see Clinical Pharmacology (12.2) in the full Prescribing Information]. The decrease in serum potassium is usually transient, not requiring supplementation. Beta-agonist medicines may produce transient hyperglycemia in some patients. In two clinical trials of 24-weeks and a 28-week safety extension study evaluating BEVESPI AEROSPHERE in subjects with COPD, there was no evidence of a treatment effect on serum glucose or potassium.

Worsening of Narrow-Angle Glaucoma

BEVESPI AEROSPHERE should be used with caution in patients with narrow-angle glaucoma. Prescribers and patients should be alert for signs and symptoms of acute narrow-angle glaucoma (e.g., eye pain or discomfort, blurred vision, visual halos or colored images in association with red eyes from conjunctival congestion and corneal edema). Instruct patients to consult a physician immediately should any of these signs or symptoms develop.

Worsening of Urinary Retention

BEVESPI AEROSPHERE should be used with caution in patients with urinary retention. Prescribers and patients should be alert for signs and symptoms of urinary retention (e.g., difficulty passing urine, painful urination), especially in patients with prostatic hyperplasia or bladder-neck obstruction. Instruct patients to consult a physician immediately should any of these signs or symptoms develop.

ADVERSE REACTIONS

LABAs, such as formoterol fumarate, one of the active ingredients in BEVESPI AEROSPHERE, increase the risk of asthma-related death. BEVESPI AEROSPHERE is not indicated for the treatment of asthma [see Boxed Warning and Warnings and Precautions (5.1) in the full Prescribing Information]. The following adverse reactions are described in greater detail elsewhere in the labeling:

• Paradoxical bronchospasm [see Warnings and Precautions (5.4) in the full Prescribing Information]

• Hypersensitivity reactions [see Contraindications (4), Warnings and Precautions (5.3) in the full Prescribing Information]

• Cardiovascular effects [see Warnings and Precautions (5.6) in the full Prescribing Information]

• Worsening of narrow-angle glaucoma [see Warnings and Precautions (5.9) in the full Prescribing Information]

• Worsening of urinary retention [see Warnings and Precautions (5.10) in the full Prescribing Information]

Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared with rates in the clinical trials of another drug and may not reflect the rates observed in practice.

The clinical program for BEVESPI AEROSPHERE included 4,911 subjects with COPD in two 24-week, placebo-controlled trials (Trials 1 and 2; n=1,100 and n=1,810, respectively). Of the 3,716 subjects, 56% were male and 91% were Caucasian. They had a mean age of 63 years and an average smoking history of 51 pack-years, with 54% identified as current smokers. At screening, the mean post-bronchodilator percent predicted forced expiratory volume in 1 second (FEV1) was 51% (range: 19% to 82%) and the mean percent reversibility was 20% (range: -32% to 135%).

Subjects received one of the following treatments: BEVESPI AEROSPHERE, glycopyrrolate 18 mcg, formoterol fumarate 9.6 mcg, or placebo twice daily or active control.

Table 1 - Adverse Reactions with BEVESPI AEROSPHERE ≥2% Incidence and More Common than with Placebo in Subjects with Chronic Obstructive Pulmonary Disease

<table>
<thead>
<tr>
<th>Adverse Reaction</th>
<th>BEVESPI AEROSPHERE (n=1036)</th>
<th>Glycopyrrolate 18 mcg BID (n=890)</th>
<th>Formoterol Fumarate 9.6 mcg BID (n=890)</th>
<th>Placebo (n=443)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory, thoracic, and mediastinal disorders</td>
<td>Cough</td>
<td>4.0</td>
<td>3.0</td>
<td>2.7</td>
</tr>
<tr>
<td>Infections and infestation</td>
<td>Urinary tract infection</td>
<td>2.6</td>
<td>1.8</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Other adverse reactions defined as events with an incidence of <1% but less than 2% with BEVESPI AEROSPHERE but more common than with placebo included the following: arthralgia, chest pain, tooth abscess, muscle spasms, headache, ophthalmalgia, pain, vomiting, pain in extremity, dizziness, anxiety, dry mouth, fall, influenza, fatigue, acute sinusitis, and contusion.
Long-Term Safety Extension Trial

In a 28-week long-term safety extension trial, 983 subjects who successfully completed Trial 1 or Trial 2 were treated for up to an additional 28 weeks for a total treatment period of up to 52 weeks with BEVESPI AEROSPHERE, glycopyrrolate 18 mcg, formoterol fumarate 9.6 mcg administered twice daily or active control. Because the subjects continued from Trial 1 or Trial 2 into the safety extension trial, the demographic and baseline characteristics of the long-term safety extension trial were similar to those of the placebo-controlled efficacy trials described above. The adverse reactions reported in the long-term safety trial were consistent with those observed in the 24-week placebo-controlled trials.

Additional Adverse Reactions:

Other adverse reactions that have been associated with the component formoterol fumarate include: hypersensitivity reactions, hyperglycemia, sleep disturbance, agitation, restlessness, tremor, nausea, tachycardia, palpitations, cardiac arrhythmias (atrial fibrillation, supraventricular tachycardia, and extrasystoles).

Drug Interactions

No formal drug interaction studies have been performed with BEVESPI AEROSPHERE.

Adrenergic Drugs

If additional adrenergic drugs are to be administered by any route, they should be used with caution because the sympathetic effects of formoterol, a component of BEVESPI AEROSPHERE, may be potentiated.

Non-Potassium-Sparing Diuretics

The ECG changes and/or hypokalemia that may result from the administration of non-potassium-sparing diuretics (such as loop or thiazide diuretics) can be acutely worsened by beta-agonists, especially when the recommended dose of the beta-agonist is exceeded. Approximately 17% of subjects were taking non-potassium sparing diuretics during the two 24-week placebo-controlled trials in subjects with COPD. The incidence of adverse events in subjects taking non-potassium-sparing diuretics was similar between BEVESPI AEROSPHERE and placebo treatment groups. In addition, there was no evidence of a treatment effect on serum potassium with BEVESPI AEROSPHERE compared to placebo in subjects taking non-potassium sparing diuretics during the two 24-week trials. However, caution is advised in the coadministration of BEVESPI AEROSPHERE with non-potassium-sparing diuretics.

Monoamine Oxidase Inhibitors, Tricyclic Antidepressants, OTC Prolonging Drugs

BEVESPI AEROSPHERE, as with other beta-agonists, should be administered with extreme caution to patients being treated with monoamine oxidase inhibitors or tricyclic antidepressants or other drugs known to prolong the QTc interval. The administration of BEVESPI AEROSPHERE to patients taking tricyclic antidepressant drugs may be associated with an increased risk of ventricular arrhythmias.

Beta-Blockers

Beta-adrenergic receptor antagonists (beta-blockers) and BEVESPI AEROSPHERE may interfere with the effect of each other when administered concurrently. Beta-blockers not only block the therapeutic effects of beta-agonists, but may produce severe bronchospasm in COPD patients. Therefore, patients with COPD should not normally be treated with beta-blockers. However, under certain circumstances, e.g., as prophylaxis after myocardial infarction, there may be no acceptable alternatives to the use of beta-blockers in patients with COPD. In this setting, cardioselective beta-blockers could be considered, although they should be administered with caution.

Anticholinergics

There is a potential for an additive interaction with concomitantly used anticholinergic medications. Therefore, avoid coadministration of BEVESPI AEROSPHERE with other anticholinergic-containing drugs as this may lead to an increase in anticholinergic adverse effects [see Warnings and Precautions (5.9, 5.10) and Adverse Reactions (6) in the full Prescribing Information].

USE IN SPECIFIC POPULATIONS

Pregnancy

Teratogenic Effects:

Pregnancy Category C. There are no adequate and well-controlled trials of BEVESPI AEROSPHERE or its individual components, glycopyrrolate and formoterol fumarate, in pregnant women. Because animal reproduction studies are not always predictive of human response, BEVESPI AEROSPHERE should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Women should be advised to contact their physicians if they become pregnant while taking BEVESPI AEROSPHERE.

Glycopyrrolate:

There was no evidence of teratogenic effects in rats and rabbits at approximately 18,000 and 270 times, respectively, the maximum recommended human daily inhalation dose (MRHID) in adults (on a mg/m² basis at a maternal oral dose of 65 mg/kg/day in rats and at a maternal intramuscular injection dose of 0.5 mg/kg in rabbits).

Single-dose studies in humans that found very small amounts of glycopyrrolate passed the placental barrier.

Formoterol Fumarate:

Formoterol fumarate has been shown to be teratogenic, embryocidal, to increase pup loss at birth and during lactation, and to decrease pup weights in rats and teratogenic in rabbits. These effects were observed at approximately 1,510 (rats) and 61,000 (rabbits) times the MRHID (on a mg/m² basis at maternal oral doses of 3 mg/kg/day and above in rats and 60 mg/kg/day in rabbits). Umbilical hernia was observed in rat fetuses at approximately 1,500 times the MRHID (on a mg/m² basis at maternal oral doses of 3 mg/kg/day and above). Prolonged pregnancy and fetal brachybrachyphalangia was observed in rats at approximately 7600 times the MRHID (on a mg/m² basis at an oral maternal dose of 15 mg/kg/day in rats). In another study in rats, no teratogenic effects were seen at approximately 600 times the MRHID (on a mg/m² basis at maternal oral doses up to 1.2 mg/kg/day in rats). Subcapsular cysts on the liver were observed in rabbit fetuses at an oral dose approximately 61,000 times the MRHID (on a mg/m² basis at a maternal oral dose of 60 mg/kg/day in rabbits). No teratogenic effects were observed at approximately 3600 times the MRHID (on a mg/m² basis at maternal oral doses up to 3.5 mg/kg/day).

Labor and Delivery

There are no well-controlled human trials that have investigated the effects of BEVESPI AEROSPHERE on preterm labor or labor at term. Because beta₂-agonists may potentially interfere with uterine contractility, BEVESPI AEROSPHERE should be used during labor only if the potential benefit justifies the potential risk.

Nursing Mothers

It is not known whether BEVESPI AEROSPHERE is excreted in human milk. Because many drugs are excreted in human milk and because formoterol fumarate, one of the active ingredients in BEVESPI AEROSPHERE, has been detected in the milk of lactating rats, caution should be exercised when BEVESPI AEROSPHERE is administered to a nursing woman. Since there are no data from controlled trials on the use of BEVESPI AEROSPHERE by nursing mothers, a decision should be made whether to discontinue nursing or to discontinue BEVESPI AEROSPHERE, taking into account the importance of BEVESPI AEROSPHERE to the mother.

Pediatric Use

BEVESPI AEROSPHERE is not indicated for use in children. The safety and effectiveness of BEVESPI AEROSPHERE in the pediatric population have not been established.

Geriatric Use

Based on available data, no adjustment of the dosage of BEVESPI AEROSPHERE in geriatric patients is necessary, but greater sensitivity in some older individuals cannot be ruled out.

The confirmatory trials of BEVESPI AEROSPHERE for COPD included 1,680 subjects aged 65 and older and, of these, 322 subjects were aged 75 and older. No overall differences in safety or effectiveness were observed between these subjects and younger subjects.

Hepatic Impairment

Formal pharmacokinetic studies using BEVESPI AEROSPHERE have not been conducted in patients with hepatic impairment. However, since formoterol fumarate is predominantly cleared by hepatic metabolism, impairment of liver function may lead to accumulation of formoterol fumarate in plasma. Therefore, patients with hepatic disease should be closely monitored.

Renal Impairment

Formal pharmacokinetic studies using BEVESPI AEROSPHERE have not been conducted in patients with renal impairment. In patients with severe renal impairment (creatinine clearance of ≤30 mL/min/1.73 m²) or end-stage renal disease requiring dialysis, BEVESPI AEROSPHERE should be used if the expected benefit outweighs the potential risk. [see Clinical Pharmacology (12.5) in the full Prescribing Information].

OVERDOSAGE

No cases of overdose have been reported with BEVESPI AEROSPHERE. BEVESPI AEROSPHERE contains both glycopyrrolate and formoterol fumarate; therefore, the risks associated with overdose for the individual components described below apply to BEVESPI AEROSPHERE. Treatment of overdose consists of discontinuation of BEVESPI AEROSPHERE together with institution of appropriate symptomatic and/or supportive therapy. The judicious use of a cardioselective beta-receptor blocker may be considered, bearing in mind that such medication can produce bronchospasm. Cardiac monitoring is recommended in case of overdose.

Glycopyrrolate

High doses of glycopyrrolate, a component of BEVESPI AEROSPHERE, may lead to anticholinergic signs and symptoms such as nausea, vomiting, dizziness, lightheadedness, blurred vision, increased intracranial pressure (causing pain, vision disturbances or reddening of the eye), obstipation or difficulties in voiding. However, there were no systemic anticholinergic adverse effects following single inhaled doses up to 144 mcg in subjects with COPD.

Formoterol Fumarate

An overdose of formoterol fumarate would likely lead to an exaggeration of effects that are typical for beta₂-agonists: seizures, angina, hypertension, hypotension, tachycardia, atrial and ventricular tachyarrhythmias, nervousness, headache, tremor, palpitations, muscle cramps, nausea, dizziness, sleep disturbances, metabolic acidosis, hyperglycemia, hypokalemia. As with all sympathomimetic medications, cardiac arrest and even death may be associated with abuse of formoterol fumarate.

©AstraZeneca 2016

Manufactured for: AstraZeneca Pharmaceuticals LP, Wilmington, DE 19850

By: Aventis Pharma LTD, Holmes Chapel CW4 8BE, United Kingdom

04/16 3309803 11/16
moment in time,” Rep. Chris Collins (R-N.Y.), a loyal Trump ally, told reporters late on March 23. “If it doesn’t pass, we’re moving beyond health care. … We are done negotiating.”

Trump’s edict clearly irked some lawmakers, including the Freedom Caucus chairman, Rep. Mark Meadows (R-N.C), whose group of more than two dozen members represented the strongest bloc against the measure.

“Anytime you don’t have 216 votes, negotiations are not totally over,” he told reporters who had surrounded him in a Capitol basement hallway as he headed in to the party’s caucus meeting.

President Trump, Speaker Ryan, and other GOP lawmakers tweaked their initial package in a variety of ways to win over both conservatives and moderates. But every time one change was made to win votes in one camp, it repelled support in another.

The White House on March 23 accepted conservatives’ demands that the legislation strip federal guarantees of essential health benefits from insurance policies. But that was another problem for moderates, and Democrats suggested the provision would not survive in the Senate.

Republican moderates in the House – as well as the Senate – objected to the bill’s provisions that would shift Medicaid from an open-ended entitlement to a set amount of funding for states that also would give governors and state lawmakers more flexibility over the program. Moderates also were concerned that the package’s tax credits would not be generous enough to help older Americans – who could be charged five times more for coverage than would their younger counterparts – afford coverage.

The House package also lost the support of key GOP allies, including the Club for Growth and Heritage Action. Physician, patient, and hospital groups also opposed it.

But Rep. Ryan’s comments made clear how difficult this decision was. “This is a disappointing day for us,” he said. “Doing big things is hard. All of us. All of us – myself included – we will need time to reflect on how we got to this moment, what we could have done to do it better.”

Kaiser Health News is a national health policy news service that is part of the nonpartisan Henry J. Kaiser Family Foundation.

Continued from page 31

CHEST Annual Meeting

The CHEST Annual Meeting offers:
- More than 400 general sessions
- Simulation education sessions
- Postgraduate courses
- Original investigation presentations
- New diagnostic and treatment solutions showcased in the exhibit hall
- Networking and social opportunities with experts in your field

> Learn More and Register chestmeeting.chestnet.org

CHEST Conference

COPD: Current Excellence and Future Development

Complete programme and speaker information now available.

Don’t miss this review of research, clinical focus, and therapeutic development for COPD.

The global burden of COPD is increasing, and the disease is projected to be the third leading cause of death and fifth leading cause of overall disability worldwide by 2020. It is one of the leading causes of disability worldwide and is the most common disease whose prevalence and mortality rates continue to rise.

COPD: Current Excellence and Future Development aims to disseminate cutting-edge findings on COPD and provide a unique, intimate platform for clinicians, experts, and specialists to come together for discussion on current best practices and future directions in diagnosis, treatment, and therapeutic innovations.

Session themes:
- History and burden of COPD
- Polypharmacy in COPD
- Infections and exacerbations in COPD
- Current treatment of COPD
- The future of COPD

> Learn More and Register chestcopdconference.com
Hospitalizations fell after rotavirus vaccine, PCVs

BY DAN WATSON

Vaccination programs targeting rotavirus and pneumonia in children younger than 2 years both contributed to a “rapid and considerable” decline in the hospital burden of pediatric patients, both in relation to those diseases and overall, according to an observational study.

Three vaccines were added to the National Immunization Plan in Israel within a 1.5-year interval, between July 2009 and January 2011: rotavirus vaccine and the 7-valent and 13-valent pneumococcal conjugate vaccines (PCV). Researchers studied the population at the Soroka University Medical Center in Beer Sheva, Israel, which was split roughly 50/50 between Jewish children and Bedouin Muslim children.

“The socioeconomic conditions and lifestyles of the two populations differ and social contacts between them, especially between children, are uncommon. However, both have access to the same medical services,” wrote Shalom Ben-Shimol, MD, of Ben-Gurion University of the Negev, Beer Sheva, and coauthors (J Pediatr. 2015;162[10]:999-1007).

The rates of rotavirus gastroenteritis, nonrotavirus gastroenteritis, alveolar pneumonia, and nonalveolar lower respiratory tract infections in the 37,591 hospitalized children younger than 2 years declined by 78%, 21%, 48%, and 7%, respectively, over the course of the study period. Outpatient ED visits for the same diseases declined 80%, 16%, 67%, and 13%, respectively.

The results are more evidence that rotavirus vaccine can help prevent diarrhea not caused by rotavirus and, similarly, that PCV can help prevent lower respiratory tract infections not caused by pneumococci.

Overall, hospitalizations and outpatient ED visits also declined significantly, by 11% and 12%, respectively.

“The impact of rotavirus vaccine and PCV may not be limited to prevention of diarrhea and respiratory disease, respectively. In one study, it was suggested that diarrhea may increase the risk of subsequent pneumonia in young children, pointing to potential synergistic benefits” of the vaccines, the authors wrote (Am J Epidemiol. 2005;162[10]:999-1007).

The study was supported by Merck Sharp & Dohme and Pfizer. Authors received speaker fees, research support, and consulting fees from those companies and from GlaxoSmithKline.

Unvaccinated first hit in pertussis outbreak

BY LUCAS FRANKI

During a 2012 pertussis outbreak in Oregon, unvaccinated or poorly vaccinated children were affected significantly earlier than fully vaccinated children, according to Steve G. Robison, MPH, and Juventilla Liko, MD, MPH, from the Immunization Program, Oregon Health Authority, Portland.

A total of 351 pertussis cases in children aged 2 months to 10 years were reported in Portland and the upper Willamette Valley from Jan. 1 to Nov. 1, 2012. Children who were unvaccinated accounted for 76 (22%) of the reported cases, and children who were poorly vaccinated accounted for 50 of the 275 (18%) cases in vaccinated children.

The median date of onset for unvaccinated and poorly vaccinated children was 117 days after Jan. 1, and the median date of onset for fully vaccinated children was 138 days after Jan. 1. Mean date of onset was 133 days and 159 days after Jan. 1, respectively. In zip codes with both unvaccinated and vaccinated cases, children who were unvaccinated were 3.2 times more likely to have an earlier onset date.

“Diseases such as pertussis may spread across areas through the choice of parents to not immunize or to limit immunizations. Once locally present, pertussis will spread to the unimmunized and vulnerable, who in turn through the weight of exposure, may then ignite a wider outbreak in vaccinated populations,” the investigators noted.

Pneumococcal conjugate vaccine resulted in a 95% decline in *Streptococcus pneumoniae* bacteremia

BY HEIDI SPLETE

Routine use of the 13-valent pneumococcal conjugate vaccine (PCV13) reduced the incidence of *Streptococcus pneumoniae* bacteremia by 95% from a time period before to a time period after the vaccine was implemented, based on a review of more than 57,000 blood cultures from children aged 3-36 months.

Kaiser Permanente implemented universal immunization with PCV13 in June 2010. “Initial trends through 2012 demonstrated continued decline in pneumococcal infections, with the biggest impact in children less than 5 years old,” wrote Tara Greenhow, MD, of Kaiser Permanente Northern California, San Francisco, and her colleagues.

Overall, the incidence of *S. pneumoniae* bacteremia declined from 74.5 per 100,000 children during the period before PCV7 (1998-1999) to 3.5 per 100,000 children during a period after routine use of PCV13 (2013-2014). The annual number of bacteremia cases from any cause dropped by 78% between these two time periods.

As bacteremia caused by pneumococci decreased, 77% of cases in the post-PCV13 time period were caused by *Escherichia coli*, *Salmonella* spp., and *Staphylococcus aureus*. “A total of 76% of bacteremia occurred with a source, including 34% urinary tract infections, 17% gastroenteritis, 8% pneumonias, 8% osteomyelitis, 6% skin and soft tissue infections, and 3% other,” Dr. Greenhow and her associates reported.

The large population of the Kaiser Permanente system supports the accuracy of the now rare incidence of bacteremia in young children, the researchers noted. However, “because bacteremia in the post-PCV13 era is more likely to occur with a source, a focused examination should be performed and appropriate studies should be obtained at the time of a blood culture collection,” they said.
CRITICAL CARE COMMENTARY: Sepsis resuscitation in a post-EGDT age

BY LYNDSEY W. HEAD, MD, AND CRAIG M. COOPERSMITH, MD

Critical care—like all of medicine—is evolving at a rapid pace. In the relatively recent past, we moved from an era of consensus-based (if thinking optimistically) or opinion-based (if being less charitable) medicine to an era of evidence-based medicine. Despite the many valid concerns about ubiquitous adoption of evidence-based medicine, there is little doubt that, on average, an aggregate population managed according to the best available literature does better than one managed solely on widely varying physician expertise. At the same time, there is no doubt that one size does not fit all, and in applying evidence-based protocols to all patients equally, we are helping many, having no effect on many, and are harming some. This has led to a still ongoing transition into an era of precision medicine where each patient gets the best care specifically for them. While the intellectual appeal of personalized therapy is obviously immense, the tools with which to do so currently remain relatively limited.

The approach to sepsis resuscitation is emblematic of the challenges and opportunities of the evolution in this transition. There was no standardized approach to early sepsis resuscitation in the 20th century, and mortality from the disease approached 50% in many studies. This changed in 2001 with the publication of the landmark early-goal-directed therapy (EGDT) trial (Rivers et al. N Engl J Med. 2001;345[19]:1368). This single center trial demonstrated a dramatic 16% absolute decrease in mortality secondary to usage of an aggressive protocol for sepsis resuscitation within the first 6 hours after presentation to the ED. In addition to early cultures and antibiotic therapy in patients randomized to both EGDT and “usual care,” EGDT involved a number of mandatory elements, including placing both an arterial catheter and a central venous catheter capable of measuring continuous central venous oxygen saturation (ScvO₂). Patients received crystalloid or colloid until a predetermined central venous pressure was obtained, and if their mean arterial pressure was still below 65 mm Hg, therapy with pressors was initiated. If their ScvO₂ was not 70% or greater, patients were transfused until their hematocrit was greater than 30%, and, if this still did not bring their ScvO₂ up, patients were started on a regimen of dobutamine. Multiple trials of varying design subsequently demonstrated efficacy in this approach, which was rapidly adopted worldwide in many centers managing patients with sepsis.

IN PAH (WHO GROUP I), 3 Key Pathways Are Targeted for Treatment

INDICATION

UPTRAVI is indicated for the treatment of pulmonary arterial hypertension (PAH, WHO Group I) to delay disease progression and reduce the risk of hospitalization for PAH. Effectiveness was established in a long-term study in PAH patients with WHO Functional Class II-III symptoms. Patients had idiopathic and heritable PAH (58%), PAH associated with connective tissue disease (29%), and PAH associated with congenital heart disease with repaired shunts (10%).

IMPORTANT SAFETY INFORMATION

WARNINGS AND PRECAUTIONS

Pulmonary Veno-Occlusive Disease (PVOD)

Should signs of pulmonary edema occur, consider the possibility of associated PVOD. If confirmed, discontinue UPTRAVI.

ADVERSE REACTIONS

Adverse reactions occurring more frequently (≥3%) on UPTRAVI compared to placebo are headache (65% vs 32%), diarrhea (42% vs 18%), jaw pain (26% vs 6%), nausea (33% vs 18%), myalgia (16% vs 6%), vomiting (18% vs 9%), pain in extremity (17% vs 8%), flushing (12% vs 5%), arthralgia (11% vs 8%), anemia (8% vs 5%), decreased appetite (6% vs 3%), and rash (11% vs 8%).

These adverse reactions are more frequent during the dose titration phase. Hyperthyroidism was observed in 1% (n=8) of patients on UPTRAVI and in none of the patients on placebo.

DRUG INTERACTIONS

Strong CYP2C8 inhibitors

Concomitant administration with strong inhibitors of CYP2C8 (eg, gemfibrozil) may result in a significant increase in exposure to selexipag and its active metabolite. Avoid concomitant use.

Please see additional Important Safety Information on adjacent page.

UPTRAVI in combination with an ERA and PDE-5i.
However, many questions remained. All patients were managed the same in EGDT, with no capacity to individualize care, regardless of clinical situation (comorbidities, age, origin of sepsis). In addition, it was never clear which specific elements of the EGDT protocol were responsible for its success, as a bundled protocol could potentially simultaneously include beneficial, harmful, and neutral components. Further, many of the elements of EGDT have not been demonstrated to be beneficial in isolation. For example, multiple studies demonstrate that patients not receiving transfusions until their hemoglobin value reaches 7 g/dL is at least as effective as receiving transfusions to a hemoglobin value of 10 g/dL. Also, there is a wealth of data suggesting that central venous pressure is not an accurate surrogate for intravascular volume.

To address these issues, three international, multicentered controlled trials were published in the New England Journal of Medicine in 2014 and 2015: ARISE, ProCESS, and ProMIS (ARISE investigators. N Engl J Med. 2014;371[16]:1496; ProCESS investigators. N Engl J Med. 2014;370[18]:1683; Mouncey, et al. N Engl J Med. 2015;372[14]:1301). Each of these studies randomized patients either to EGDT as defined in the original...

Continued on following page

A primary endpoint event was experienced by 27.0% (155/574) of UPTRAVI-treated patients vs 41.6% (242/582) of placebo-treated patients. Disease progression primary endpoint comprised the following components as first events (up to end of treatment; UPTRAVI vs placebo):

- Hospitalization for PAH (13.6% vs 18.7%)
- Other disease progression events (6.6% vs 17.2%)†
- Death (4.9% vs 3.1%)
- Initiation of parenteral prostanooid or chronic oxygen therapy (1.7% vs 2.2%)
- PAH worsening resulting in need for lung transplantation or balloon atrial septostomy (0.2% vs 0.3%)

Reductions in PAH-related hospitalization and other disease progression events† drove an overall 40% risk reduction.

Add UPTRAVI to an ERA + PDE-Si for All-oral TRIPLE-combination Therapy

IMPORTANT SAFETY INFORMATION (cont’d)

DOSAGE AND ADMINISTRATION

Recommended Dosage

Recommended starting dose is 200 mcg twice daily. Tolerability may be improved when taken with food. Increase by 200 mcg twice daily, usually at weekly intervals, to the highest tolerated dose up to 1600 mcg twice daily. If dose is not tolerated, reduce to the previous tolerated dose.

Patients with Hepatic Impairment

For patients with moderate hepatic impairment (Child-Pugh class B), the starting dose is 200 mcg once daily. Increase by 200 mcg once daily at weekly intervals, as tolerated. Avoid use of UPTRAVI in patients with severe hepatic impairment (Child-Pugh class C).

Dosage Strengths

UPTRAVI tablet strengths:

- 200, 400, 600, 800, 1000, 1200, 1400, and 1600 mcg

Please see Brief Summary of Prescribing Information on the following page.

1. *Ex ERA, PDE-Si, or both.
2. Other disease progression defined as a 15% decrease from baseline in 6MWD plus worsening of Functional Class or need for additional PAH-specific therapy.
3. 6MWD=6-minute walk distance; ERA=endothelin receptor antagonist; ERS=European Respiratory Society; ESC=European Society of Cardiology; PDE=phosphodiesterase type-5 inhibitor; WHO=World Health Organization.

Visit www.UPTRAVI.com/hcp to learn more
Continued from previous page

Rivers study or to a “usual care” group with management directed under the guidance of a bedside health-care provider. Across all three trials, the EGDT group received more fluids, vasopressors, and transfusions than the “usual care” group. However, there was no mortality benefit detected in any of the trials.

The difference between the original Rivers trial (demonstrating a huge benefit of EGDT) and the three subsequent trials leads (showing no benefit) was striking and leads to the obvious questions of (a) why the results are so disparate and (b) what should we do for our patients moving forward? Perhaps the most obvious difference in the trials is the baseline mortality in the “usual care” groups between the studies. In the original Rivers study, in-hospital mortality was 46.5% for the “usual care” group. For ARISE, ProCESS, and ProMISE, 60- to 90-day mortality ranged from 18.8% to 29.2% in the “usual care” group. This means either that the patients in the original EGDT trial were significantly sicker or that something fundamental has changed over time. A closer review of the papers reveals it is likely the latter as, in actuality, the “usual care” group in the three NEJM trials looked a lot like the EGDT group in the original trial. Most patients received significant volume resuscitation in these studies prior to enrollment, and the original ScvO2 was 71% in ProCESS (as opposed to 49% in the original Rivers trial). This suggested that increasing awareness of sepsis that occurred during the 15 years between the EGDT trial and the subsequent three trials – likely due to the Surviving Sepsis Campaign, as well as other efforts from both advocacy groups as well as medical organizations – led to better sepsis care on patient presentation. In essence, what was “usual care” in the time of the original EGDT study had become inappropriate care in the modern era, and much of what was protocalized in EGDT had been transformed into “usual care,” even if a specific protocol was not being used. In the setting in which “usual care” had dramatically improved, the original EGDT protocol was not helped if implemented on all comers. One key reason is that many patients simply improved with volume and antibiotics (which had become “usual care”) and did not need additional interventions. Another reason is that some of the interventions in EGDT (blood transfusion, continuous ScvO2 monitoring) are likely not beneficial in the majority of cases.

These studies have led to significant changes in recommendations in sepsis management guidelines. The 2016 Surviving Sepsis Campaign guidelines – published after ARISE, ProCESS and ProMISE trials – still recommend antibiotics, cultures, adequate volume resuscitation (without specifying how to do so), targeting an initial mean arterial pressure of 65 mm Hg, and vasopressors if a patient remains hypotensive despite adequate fluids (Rhodes et al. Crit Care Med. 2017; 45). However, no recommendations are made regarding mandatory placement of a central venous catheter, measuring central venous pressure, transfusing to higher hemoglobin, etc. In many ways, the last 15 years of fluid resuscitation in sepsis represents the triumph of evidence-based medicine over opinion-based medicine and the challenges of moving toward precision medicine. When “usual care” was highly variable without a consistent scientific rationale, EGDT markedly improved outcomes – a clear victory of evidence-based medicine that
likely saved thousands of lives. However, when EGDT effectively became “usual care,” each individual element of EGDT bundled together failed to further improve outcome. The new evidence suggested that for all comers, EGDT is no better than the new normal, and, thus, newer guidelines do not recommend most of its components.

Moving forward, what is the best way to resuscitate newly identified patients with sepsis? A big fear in eliminating EGDT in its entirety is that practitioners will not have any guidance on how to manage resuscitation in sepsis and so will revert to less rigorous practice patterns. While we acknowledge that concern, we are optimistic that the future will continue to yield decreases in sepsis mortality. Optimal, volume status will be assessed on an individual basis. Rather than resuscitating every patient with a one-size-fits-all parameter that is fairly crude at best and inaccurate at worst (central venous pressure), bedside caregivers should use whatever tools are most appropriate to their individual patient and expertise. This could include bedside ultrasound, stroke volume variation, esophageal Doppler, passive leg raise, etc., depending on the clinical situation. The concept of appropriate volume resuscitation raised in EGDT continues to be 100% valid, but the implementation is now patient-specific and will vary upon available technology, provider skill, and bedside factors that might make one method superior to the other. Similarly, the failure of EGDT to improve survival in the ARIsE, ProCESS, and ProMISe trials does not mean there is never a role for checking venous blood gases and measuring ScvO2. From our point of view, this would be a gross misinterpretation of the trials, as the finding that all elements of EGDT combined fail to benefit all trials, as the finding that all elements be a gross misinterpretation of the evidence suggested that for all comers, EGDT is no better than the new normal, and, thus, newer guidelines do not recommend most of its components.

In the future, we hope that sepsis resuscitation will be performed in an analogous fashion to cancer therapy. Understanding a patient’s response at the organ level and cellular and subcellular levels will allow us to individualize initial therapy. For instance, an “omics” evaluation of a patient’s immune system may be helpful for guiding treatment. Distinct patterns of gene and protein expression could potentially demonstrate in advance how different patients will respond differently to the same therapy and, in a dynamic manner, determine whether they are responding according to the expected trajectory. Unfortunately, since this is impractical today, the best we can do is to follow recommendations that are applicable to large populations (the Surviving Sepsis bundles) while simultaneously individualizing therapy when no clear data are available. Further, it is critical to assess and reassess the response at the bedside to optimize outcomes. While it is frustrating that no clear guidance can be given on the best way to measure volume status or fluid responsiveness or when there is utility in measuring ScvO2, there is comfort in knowing that best practice has evolved over the past 15 years such that the majority of EGDT is now “usual care.” Moving forward, the challenges in transitioning sepsis resuscitation from population-based evidence-based medicine to individualized therapy are real, but the opportunities for improved outcomes in this deadly disease are enormous.

Dr. Head is with the Department of Anesthesiology, and Dr. Coopersmith is with the Department of Surgery, Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA.
PULMONARY PERSPECTIVES: Ensuring quality for EBUS bronchoscopy with varying levels of practitioner experience

BY AMIT K. MAHAJAN, MD, FCCP; SANDEEP J. KHANDBHAR, MD; AND ERIK FOLCH, MD, MSC

Endobronchial ultrasound (EBUS) bronchoscopy is a tool that has transformed the diagnosis and staging of lung cancer. Through real-time ultrasound imaging, EBUS provides clear images of lymph nodes and proximal lung masses that can be adequately sampled through transbronchial needle aspiration. EBUS is a minimally invasive, outpatient procedure that can also be used for diagnosing benign disease within the chest. Large studies investigating the use of EBUS for mediastinal staging have shown the procedure to be highly sensitive and specific while harboring an excellent safety profile. As a result, EBUS has essentially replaced mediastinoscopy for the staging of lung cancer.

EBUS bronchoscopy was primarily offered at major academic centers when first released and was performed by physicians who were formally trained in the procedure during interventional pulmonology or thoracic surgery fellowships. Over time, the tool has been adopted by established general pulmonologists without formal training in EBUS. Some of these pulmonologists only develop their skills by attending 1- to 2-day courses, which is insufficient supervision to become competent in this important procedure.

An ongoing debate continues as to how many supervised EBUS bronchoscopies should be performed prior to being considered proficient. As procedural competence has been associated with the number of EBUS procedures performed, the learning curve required to master EBUS is an important component of proficiency. While most consider learning curves to be variable, evidence produced by Fernandez-Villar and colleagues revealed that EBUS performance continues to improve up to 120 procedures. This analysis was performed in unselected consecutive patients based on diagnostic yield, procedure length, number of lymph nodes passes performed in order to obtain adequate samples, and the number of lymph nodes studied per patient. The learning curve was evaluated based on consecutive groups of 20 patients, the number of adequate samples obtained, and the diagnostic accuracy. Their results indicated that the diagnostic effectiveness of EBUS-TBNA improves with increasing number of procedures performed, allowing for access to a greater number of lymph nodes without necessarily increasing the length of the procedure, and by reducing the number of punctures at each nodal station. Based on their results, the first 20 procedures performed yielded a 70% accuracy, 21 to 40 procedures performed resulted in 81.8% accuracy. As the number of procedures increased, the diagnostic accuracy continued to improve up to 120 procedures.

As a result, EBUS has essentially transformed the diagnosis and staging of lung cancer. Through real-time ultrasound imaging, EBUS has been adopted by established general pulmonologists without formal training in EBUS. Some of these pulmonologists only develop their skills by attending 1- to 2-day courses, which is insufficient supervision to become competent in this important procedure.

SPIRIVA RESPIMAT—A DIFFERENT APPROACH ADDS NEW EXPECTATIONS FOR ASTHMA

SPIRIVA RESPIMAT, 1.25 mcg, is a bronchodilator indicated for the long-term, once-daily, maintenance treatment of asthma in patients 12 years of age and older. SPIRIVA RESPIMAT is not indicated for relief of acute bronchospasm.

IMPORTANT SAFETY INFORMATION

SPIRIVA RESPIMAT is contraindicated in patients with a hypersensitivity to tiotropium, ipratropium, or any component of this product. Immediate hypersensitivity reactions, including angioedema (including swelling of the lips, tongue, or throat), itching, or rash have been reported. SPIRIVA RESPIMAT is intended as a once-daily maintenance treatment for asthma and should not be used for the relief of acute symptoms, i.e., as rescue therapy for the treatment of acute episodes of bronchospasm. In the event of an attack, a rapid-acting beta-agonist should be used.

Immediate hypersensitivity reactions, including urticaria, angioedema (including swelling of the lips, tongue, or throat), rash, bronchospasm, anaphylaxis, or itching may occur after administration of SPIRIVA RESPIMAT. If such a reaction occurs, discontinue SPIRIVA RESPIMAT at once and consider alternative treatments. Given the similar structural formula of atropine to tiotropium, patients with a history of hypersensitivity reactions to atropine or its derivatives should be closely monitored for similar hypersensitivity reactions to SPIRIVA RESPIMAT.

Inhaled medicines, including SPIRIVA RESPIMAT, may cause paradoxical bronchospasm. If this occurs, it should be treated with an inhaled short-acting beta-agonist, such as albuterol. Treatment with SPIRIVA RESPIMAT should be stopped and other treatments considered.
resulted in 83.3% accuracy, 61 to 80 procedures performed resulted in 89.8% accuracy, 81 to 100 procedures performed resulted in 90.5% accuracy, and 101 to 120 procedures performed resulted in 94.5% accuracy.

While the American Thoracic Society (ATS) and the American College of Chest Physicians (CHEST) both recommend a minimum number of 40 to 50 supervised EBUS bronchoscopies prior to performing the procedure independently, along with 20 procedures per year for maintenance of competency, most institutions do not track the number of EBUS procedures performed and they do not follow the ATS or CHEST recommendations. As a result, a number of physicians are independently performing EBUS without adequate experience, resulting in possibly poor quality care. Unfortunately, some short courses, intended to generate interest and encourage attendees to pursue further training, are mistakenly assumed to be sufficient by the novice user.

As the number of interventional pulmonary fellowships continues to expand, the growing number of subspecialized pulmonologists with extensive training in EBUS grows. During a dedicated interventional pulmonary fellowship, fellows perform well above the number of

Continued on following page
Continued from previous page

EBUS bronchoscopies suggested by the ATS and CHEST in a single year. Recently published accreditation guidelines require a minimum of 100 cases per interventional pulmonary fellow. These fellowship-trained interventional pulmonologists are then tested to become board-certified in a wide array of minimally invasive procedures, including EBUS. As a result, a model has developed where both board-certified interventional pulmonologists with extensive training in EBUS and general pulmonologists not meeting ATS or CHEST minimum requirements practice at the same institution.

Proponents of a more liberal access to credentialing in EBUS have suggested that adhering to competency requirements constitutes a “barrier to entry” in which in-cumbent practitioners benefit from limiting competition. However, like any regulatory metric, the rationale is to prevent asymmetric information. In this example, the physician knows more than the patient. The patient cannot make an informed decision on which provider to choose and what are the minimum requirements that are likely to produce the most useful information (ie, complete staging). For these reasons, it is imperative...
Proponents of a more liberal access to credentialing in EBUS have suggested that adhering to competency requirements constitutes a “barrier to entry” in which incumbent practitioners benefit from limiting competition. Performing EBUS independently, as EBUS use continues to grow, follows in 3- or 4-year pulmonary and critical care fellowships will be likely capable of meeting the minimal number of observed cases, but, if these numbers are not achieved, additional training should be required. Understandably, this could be challenging for physicians who are unable to take time away from their practice to gain this training. However, if these numbers cannot be met, credentialing requirements should be enforced. Even more challenging than establishing quality measures for EBUS, is to ensure the highest level of care delivery for patients when there exist multiple levels of experience in the same institution. Undoubtedly, patients undergoing EBUS bronchoscopy, or any procedure for that matter, would want the most skilled physician who has attained certification in the procedure. Unfortunately, no formal certification of EBUS exists outside of gaining board certification in interventional pulmonology. To ensure excellence in care, physicians performing EBUS should be involved in quality improvement initiatives and review pathologic yields along with complications on a regular basis in a group setting. Unlike emergency interventions, EBUS bronchoscopy is an entirely elective procedure.

The advent of EBUS bronchoscopy has revolutionized the diagnosis and staging of lung cancer. As use of EBUS continues to become more widespread, the incidence of high volume and low volume proceduralists will become a more commonly encountered scenario. Guidelines have been set by the professional pulmonary societies based on the data and observations available. At the local level, stringent guidelines need to be established by hospitals to ensure a high level of quality with appropriate oversight. Patients undergoing EBUS deserve a physician who is skilled in the procedure and has performed at least the minimum number of procedures to provide the adequate care.

Dr. Mahajan is Medical Director, Interventional Pulmonology, Inova Heart and Vascular Institute - Inova Fairfax Hospital, and Associate Professor, Virginia Commonwealth Medical School; Dr. Khandhar is Medical Director, Thoracic Surgery, Inova Heart and Vascular Institute - Inova Fairfax Hospital, and Assistant Clinical Professor, Virginia Commonwealth Medical School; Falls Church, VA. Dr. Folch is Co-Director, Interventional Pulmonology Chief, Complex Chest Diseases Center, Harvard Medical School, Massachusetts General Hospital, Boston, MA.

References
1. Gomez M, Silvestri GA. Endobronchial ultrasound for the diagno-
Continued on following page
Continued from previous page

EDITOR’S NOTE

Dr. Mahajan and colleagues present a compelling case for requiring minimum standards to perform an EBUS-guided bronchoscopy. Their opinion piece epitomizes the classic tension between physicians with advanced training and those who can only have practice-based training. A middle ground may exist, as perhaps competence could be achieved by simulation, clinical cases performed, and observation by a regional expert? Physicians in practice must have a pathway to adopt new technology whether it is thoracic ultrasound or endobronchial ultrasound, but it must be done in a safe manner. As a referring physician, I would only send my patients who required mediastinal staging to a pulmonologist who I knew performed EBUS regularly.

Nitin Puri, MD, FCCP

This month in CHEST: Editor’s picks

BY RICHARD S. IRWIN, MD, MASTER FCCP
Editor in Chief, CHEST

ORIGINAL RESEARCH

Clinical Predictors of Hospital Mortality Differ Between Direct and Indirect ARDS. By Dr. L. Luo, et al.

Cross-Disciplinary Analysis of Lymph Node Classification in Lung Cancer on CT Scanning. By Dr. A. H. El-Sherief, et al. (Podcast)

GIANTS IN CHEST MEDICINE

Professor James C. Hogg. By Dr. Manuel G. Cosio.

COMMENTARY

Pulmonary Hypertension Care Center Network: Improving Care and Outcomes in Pulmonary Hypertension. By Dr. S. Sahay, et al.

EVIDENCE-BASED MEDICINE

Calendar subject to change. For most current course list and more information, visit livelearning.chestnet.org.
Uranium mining, hyperoxia, palliative care education, OSA impact

Health effects of uranium mining: Decay series of U 238

Prior to 1900, uranium was used only for coloring glass. After discovery of radium by Madame Curie in 1898, uranium was widely mined to obtain radium (a decay product of uranium).

While uranium was not directly mined until 1900, uranium contaminants were in the ore in silver and cobalt mines in Czechoslovakia, which were heavily mined in the 18th and 19th centuries.

Increased mortality was described in these miners in 1770. In 1878, Harting and Hesse (a public health officer and a local mine physician) described 23% mortality from lung cancer in 650 Schneeberg cobalt miners over 10 years. By the 1920s, 50% of exposed miners were dying of lung cancer.

There were no reports (written in English) of lung cancer associated with radon gas and specifically uranium mining, until 1942; but in 1944, these results were called into question in a monograph from the National Cancer Institute. The carcinogenicity of radon was confirmed in 1951; however, this remained an internal government document until 1980. By 1967, the increased prevalence of lung cancer in uranium miners was widely known. By 1970, new ventilation standards for uranium mines were established.

Lung cancer risk associated with uranium mining is the result of exposure to radon gas and specifically radon progeny of Polonium 218 and 210. These radon progeny remain suspended in air, attached to ambient particles (diesel exhaust, silica) and are then inhaled into the lung, where they precipitate on the major airways. Polonium 218 and 210 are alpha emitters, which have a 20-fold increase in energy compared with gamma rays (the primary radiation source in radiation therapy). Given the mass of alpha particles (two protons and two neutrons), they interact with superficial tissues; thus, once deposited in the large airways, a large radiation dose is directed to the respiratory epithelium of these airways.

Ocular control of exposure to radon and radon progeny is accomplished primarily by ventilation. In high-grade deposits of uranium, such as the 20% ore grades in the Athabasca Basin of Saskatchewan, remote control mining is performed.

Smoking, in combination with occupational exposure to radon progeny, carries a greater than additive but less than multiplicative risk of lung cancer.

In addition to the lung cancer risk associated with radon progeny exposure, uranium miners share the occupational risks of other miners: exposure to silica and diesel exhaust. Miners are also at risk for traumatic injuries, including electrocution.

Health effects associated with uranium milling, enrichment, and tailings will be discussed in a subsequent CHEST Physician article.

Richard B. Evans, MD, MPH, FCCP
Steering Committee Chair

Continued on following page
Continued from previous page

Respiratory Care

Hyperoxia in critically ill patients: What’s the verdict?

Oxygen saturation is considered to be the "fifth vital sign," and current guidelines recommend target oxygen saturation (SpO2) between 94% and 98%, with lower targets for patients at risk for hypercapnic respiratory failure (O’Driscoll BR et al. Thorax. 2008;63(suppl):v11). Oxygen toxicity is well-demonstrated in experimental animal studies. While its incidence and impact on outcomes is difficult to determine in the clinical setting, increases in hospital mortality have been associated with hyperoxia in patients with cardiac arrest, acute myocardial infarction, and stroke (Kligannon et al. JAMA. 2010;303[21]:2165; Stub et al. Circulation. 2015;131[24]:2143; Rincon et al. Crit Care Med. 2014;42[2]:387).

Girardis and colleagues examined the impact of conservative oxygen administration (PaO2 maintained between 70-100 mm Hg or SpO2 between 94-98%) vs standard care group (permitting PaO2 values up to 150 mm Hg or SpO2 values between 97-100%) in ICU patients admitted for at least 72 hours (Girardis et al. JAMA. 2016;316[15]:1583). There were striking differences in ICU mortality between the two groups with absolute risk reduction of 8.6% (P = .01) favoring the conservative oxygen therapy group, as well as significant reductions in episodes of shock, liver failure, and bacteremia. However, there were baseline differences in the severity of illness between the two groups: the use of a modified intention to treat analysis and the early termination of the trial mitigate the robustness of these findings.

Complementing the findings of Girardis and colleagues, a recent analysis of more than 14,000 critically ill patients, found that time spent at PaO2 > 200 mm Hg was associated with excess mortality and fewer ventilator-free days (Helmerhorst et al. Crit Care Med. 2017;45[2]:187).

While other trials demonstrated safety and feasibility of conservative oxygen therapy in critically ill patients (Panwar et al. Am J Respir Crit Care Med. 2016;193[1]:43; Helmerhorst et al. Crit Care Med. 2016;44[3]:534; Suzuki et al. Crit Care Med. 2014;42[6]:1414), they did not find significant differences between conservative and liberal oxygen therapy with regards to new organ dysfunction or mortality. However, the degree of hyperoxia was usually more modest than in either the Girardis trial or the Helmerhorst (2017) analysis.

Continued on page 51
Mon General

Pulmonologist and Critical Care Physician

Monongalia General Hospital in Morgantown, WV is seeking a full time Board Certified or Board Eligible pulmonologist and critical care physician. This is a great opportunity for someone who wants to join a very busy practice.

- Fully supported office in a brand new medical office building steps from the hospital
- Hospital offers a wide scope of services and boasts a brand new cancer center
- Competitive Salary with bonus
- Relocation and Sign on Bonus
- Great Opportunity for new grads or established physicians

The 189-bed not-for-profit community hospital recently completed a $92M renovation and expansion. Mon General Hospital is one of only 2% of hospitals nationally awarded both a Patient Safety Award and a Patient Experience Award by Healthgrades, a leading online resource for comprehensive information about physicians and hospitals. We are a Level IV Trauma Center and a certified Chest Pain Center with a university hospital operating a Level I trauma center is less than 1 mile away.

Morgantown is a lovely place to practice medicine. Home to West Virginia University, the area has amenities that only a “college town” offers – great sports, theatre, shopping, nightlife and restaurants. Morgantown is a short drive to Pittsburgh, 3-4 hours to the Baltimore/Washington Metro area. Within an hour’s drive you’ll find class 4-5 white water rafting, snow/water skiing, mountain biking, hunting, fishing, golfing and a quality of life that is increasingly difficult to find. It also boasts an excellent public and private school system.

To learn more, please contact us or go to our web site www.mongeneral.com

Whitney Barnett
barnettw@monhealthsys.org
Phone: 304-216-6818

Disclaimer Chest Physician assumes the statements made in classified advertisements are accurate, but cannot investigate the statements and assumes no responsibility or liability concerning their content. The Publisher reserves the right to decline, withdraw, or edit advertisements. Every effort will be made to avoid mistakes, but responsibility cannot be accepted for clerical or printer errors.
PULMONARY/SLEEP PHYSICIAN
Minneapolis, MN

Dynamic, well-established 8 physician independent practice seeks a full-time or part-time physician BC/BE in Pulmonary medicine. Advanced training in Interventional Pulmonology (EBUS/Navigational Bronchoscopy) highly desired but not required. The practice encompasses all aspects of Pulmonary medicine, including an active clinical research program and a multidisciplinary lung cancer program. Affiliated Internal Medicine residency program offers opportunities for teaching. Experience in Sleep medicine preferred but not required. The comprehensive Sleep medicine program is comprised of multiple AASM-accredited sleep disorders centers. Competitive compensation/benefit package leading to partnership. Attractive call schedule. Excellent community offers extensive cultural opportunities of a major metropolitan area combined with year-round outdoor and recreational activities.

Please reply with CV to Human Resources, Minnesota Lung Center / Minnesota Sleep Institute, 920 East 28th Street, Suite 700, Minneapolis, Minnesota 55407. Fax: 612-871-4883 or by email to dh@mlc-msi.com www.minnlung.com
Visit some of Toronto’s best during CHEST 2017

Get ready to visit the metropolitan hub of Canada. Explore new grounds with the chest medicine community for current pulmonary, critical care, and sleep medicine topics presented by world-renowned faculty in a variety of innovative instruction formats.

You will have access to our cutting-edge education, Oct 28 - Nov 1, but don’t forget to take advantage of all that Toronto has to offer.

Food

Are you a foodie? Or do you just enjoy a great meal? Breakfast and brunch are the best ways to start off your day, and there’s no shortage of spots in the Toronto area to get your fix. No matter what you’re craving, there’s a place for you.

Le Petit Dejeune offers an ever-changing menu that ranges from less expensive items, like soup, sandwiches, and salads, to some pricier stuffed crepes, quiche, and eggs florentine. While most Sundays, Saving Grace is packed, but there’s only a 15-minute wait, and the atmosphere is quite pleasant. Looking for the perfect cinnamon bun? Rosen’s Cinnamon Buns is the place to go. But you have to look closely for the bakery’s name, since the sign above the window still advertises the hair salon that used to reside in the same spot!

Nature parks

One of the city’s largest and oldest parks, High Park is Toronto’s version of New York City’s Central Park. There’s plenty to enjoy, such as Grenadier Pond, numerous ravine-based hiking trails, playgrounds, athletic areas, restaurants, a museum, and even a zoo! If you want a different type of nature excursion, there is always beautiful Niagara Falls, Ontario, which is just a short drive from Toronto. Don’t miss seeing the Tesla monument in Queen Victoria Park, or go 10 minutes north of the Falls to the Botanical Gardens, home to the Butterfly Conservatory with over 2,000 butterflies.

Relaxation

After eventful days of absorbing all the new science CHEST 2017 has to offer, you may want to relax your mind and body. Elmwood spa, located in downtown Toronto, is where “four spacious floors of treatment and renewal options mean that Elmwood Spa can provide the convenience and flexibility to cater to demanding schedules,” according to Elmwood.

Learn more about Toronto opportunities at blogTO.com, and find out more about CHEST 2017 at chestmeeting.chestnet.org.
Dear Clot,

You really don’t take my breath away.

The EKOS® System quickly improves right ventricular function and pulmonary artery pressure.¹

EKOS® does much more than the current standard of PE care. It speeds time to dissolution by unwinding the clot’s fibrin structure, allowing greater lytic dispersion and accelerated absorption.² It also minimizes bleeding risk, requiring up to 4x less drug dosage than systemic delivery.³,⁴

Visit www.ekoscorp.com to learn more about the only endovascular device cleared by the FDA for the treatment of pulmonary embolism.

¹ In the Seattle II study of 150 patients with massive or submassive PE using an EKOS® and lytic combination, the mean RV/LV ratio decreased from 1.55 pre-procedure to 1.13 at 48 hours post-procedure (P<0.0001) while PA systolic pressure decreased from 51.4mmHg to 36.9mmHg (P<0.0001).

