Waveform capnography assesses ventilation by monitoring exhaled carbon dioxide.

Basics of Waveform Capnography

- **Overview**
 - Capnography measures ventilation through exhaled CO₂ (P̄ECO₂).
 - Abnormal morphology can provide important data regarding pulmonary pathophysiology.

- **Clinical Applications**
 - Confirmation of endotracheal intubation
 - Monitoring airway integrity
 - Monitoring cardiac output
 - Monitoring spontaneous respiration
 - Assessing for CO₂ retention
 - Assessing ROSC during CPR by observing a sudden increase in waveform amplitude.

- **ETCO₂ Waveform**
 - **α-Angle**
 - Between II and III
 - >90° = bronchospasm or V/Q mismatch
 - **β-Angle**
 - Between III and IV/0
 - >90° = rebreathing or mechanical obstruction

- **Phase I**
 - Inspiratory baseline
 - P̄ECO₂ = zero

- **Phase II**
 - Beginning of expiration
 - Transition as CO₂ rises when anatomical dead space, then alveolar gas, is exhaled

- **Phase III**
 - Alveolar plateau
 - ETCO₂
 - Peak CO₂ at end of phase III
 - Correlates with PaCO₂

- **Phase IV/0**
 - Start of inspiration
 - P̄ECO₂ rapidly falls to zero

- **Bronchospasm and Rebreathing/Air Trapping**
 - Increase or loss of α-angle (aka "shark fin")
 - Dead space has not finished emptying before next inspiration
 - Increasing level of baseline P̄ECO₂ due to air trapping

- **Emphysema**
 - Arterial CO₂ represented by early peak, not end-tidal, due to hypercompliance and poor gas exchange surface
 - Pattern can also be seen with pneumothorax with air leak

- **Sudden Loss of Waveform**
 - Critical event needing emergency intervention
 - ET tube disconnected, dislodged, kinked, or obstructed

- **Mechanical Airway Obstruction**
 - Fixed mechanical obstruction affects both inspiration (phase IV/0) & expiration (phase II)
 - α-angle and β-angle both >90°

- **Cardiogenic Oscillations**
 - Pulsation transmitted from the heart to the lung parenchyma produces small volume changes that manifest as oscillations
 - Sign of cardiomegaly

- **Downtrending ETCO₂**
 - Decreasing waveform size can indicate:
 - Shock/low cardiac output state
 - Pulmonary embolism
 - Hyperventilation