BASICS OF WAVEFORM CAPNOGRAPHY

Waveform capnography assesses ventilation by monitoring exhaled carbon dioxide

Can use measurement and morphology during different phases of respiratory cycle to uncover pathophysiology

© 2021 American College of Chest Physicians

OVERVIEW

- Capnography measures ventilation through exhaled CO₂ (P_ECO₂)
- Abnormal morphology can provide important data regarding pulmonary pathophysiology

CLINICAL APPLICATIONS

- Confirmation of endotracheal intubation
- · Monitoring airway integrity
- Monitoring cardiac output
- Monitoring spontaneous respiration
- Assessing for CO₂ retention
- Assessing ROSC during CPR by observing a sudden increase in waveform amplitude

ETCO₂ WAVEFORM

α-Angle

· Inspiratory baseline

P_ECO₂ = zero

PHASE I

- Between II and III
- >90° = bronchospasm or V/Q mismatch

Inspiration

PHASE II

- Beginning of expiration
- Transition as CO₂ rises when anatomical dead space, then alveolar gas, is exhaled

PHASE III

- Alveolar plateau
- ETCO₂
 - Peak CO₂ at end of phase III

IV/0

ß-Angle

Between III and IV/0

• >90° = rebreathing or

mechanical obstruction

Correlates with PaCO₂

Baseline PHASE IV/0

- Start of inspiration
- P_ECO₂ rapidly falls to zero

 P_ECO_2

BRONCHOSPASM AND REBREATHING/AIR TRAPPING

- Increase or loss of α -angle (aka "shark fin")
- Dead space has not finished emptying before next inspiration
- Increasing level of baseline P_ECO₂ due to air trapping

MECHANICAL AIRWAY OBSTRUCTION

- Fixed mechanical obstruction affects both inspiration (phase IV/0) & expiration (phase II)
- α-angle and β-angle both >90°

Expiration

EMPHYSEMA

- Arterial CO₂ represented by early peak, not end-tidal, due to hypercompliance and poor gas exchange surface
- Pattern can also be seen with pneumothorax with air leak

CARDIOGENIC OSCILLATIONS

- Pulsation transmitted from the heart to the lung parenchyma produces small volume changes that manifest as oscillations
- Sign of cardiomegaly

SUDDEN LOSS OF WAVEFORM

- Critical event needing emergency intervention
- ET tube disconnected, dislodged, kinked, or obstructed

DOWNTRENDING ETCO₂

- Decreasing waveform size can indicate:
- Shock/low cardiac output state
- · Pulmonary embolism
- Hyperventilation

