

Reliability of an Automated Echocardiographic Workflow for Evaluation of Pulmonary Hypertension

STUDY DESIGN

- Using 213 healthy controls and 221 patients with pulmonary hypertension (PH), the study evaluated **precision of deep learning vs core laboratory estimation of parameters** including tricuspid regurgitation velocity (TRV), right ventricular basal diameter, tricuspid annular plane systolic excursion (TAPSE), right atrial (RA) area, and right ventricular fractional area change (RVFAC).
- The second portion of the study was to discriminate milder forms of PH (mean pulmonary artery pressure, 20-35 mm Hg) with measurable peak TRV.

RESULTS

No significant bias was observed in the interpretation of peak TRV, RA area, and TAPSE between clinical lab and deep learning reads; however, RVFAC did demonstrate a significant bias of 11.46% (8.43-14.74).

In this study, a deep learning workflow in echocardiography offered accurate interpretation in several variables pertaining to PH and was also able to detect PH.