How to Assess Dynamic Hyperinflation during CPET

COL Aaron B. Holley, MD, FACP, FCCP
Program Director PCCM Fellowship
Associate Professor of Medicine
Walter Reed National Military Medical Center
The view(s) expressed herein are those of the author(s) and do not reflect the official policy or position of Walter Reed National Military Medical Center, the U.S. Army Medical Department, the U.S. Army Office of the Surgeon General, the Department of the Army, the Department of Defense or the U.S. Government.
Learning Objectives

• Understand Dynamic Hyperinflation (DH)
• Review Mechanisms of Dyspnea
• Identify DH on CPET
 • FVLs versus VE/MVV
Dynamic Hyperinflation

• In airway disease:
 • End-expiratory lung volume (EELV) ↑
 • Airways collapse at low lung volumes
 • ↑ with obstruction/ventilation
• “Air-trapping” with ↑ ventilation

Dynamic Hyperinflation

Ann ATS 2018; 15:1096–1104
Dynamic Hyperinflation

- Consequences
 - ↑ Inspiratory work
 - Mechanical limitation
 - Neuromechanical uncoupling
Dyspnea

TABLE 2. POSSIBLE AFFERENT SOURCES FOR RESPIRATORY SENSATION*

<table>
<thead>
<tr>
<th>Source of Sensation</th>
<th>Adequate Stimulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medullary respiratory corollary discharge</td>
<td>Drives to automatic breathing (hypercapnia, hypoxia, exercise)</td>
</tr>
<tr>
<td>Primary motor cortex corollary discharge</td>
<td>Voluntary respiratory drive</td>
</tr>
<tr>
<td>Limbic motor corollary discharge</td>
<td>Emotions</td>
</tr>
<tr>
<td>Carotid and aortic bodies</td>
<td>Hypercapnia, hypoxemia, acidosis</td>
</tr>
<tr>
<td>Medullary chemoreceptors</td>
<td>Hypercapnia</td>
</tr>
<tr>
<td>Slowly adapting pulmonary stretch receptors</td>
<td>Lung inflation</td>
</tr>
<tr>
<td>Rapidly adapting pulmonary stretch receptors</td>
<td>Airway collapse, irritant substances, large fast (sudden) lung inflations/deflations</td>
</tr>
<tr>
<td>Pulmonary C-fibers (I-receptors)</td>
<td>Pulmonary vascular congestion</td>
</tr>
<tr>
<td>Airway C-fibers</td>
<td>Irritant substances</td>
</tr>
<tr>
<td>Upper airway “flow” receptors</td>
<td>Cooling of airway mucosa</td>
</tr>
<tr>
<td>Muscle spindles in respiratory pump muscles</td>
<td>Muscle length change with breathing motion</td>
</tr>
<tr>
<td>Tendon organs in respiratory pump muscles</td>
<td>Muscle active force with breathing motion</td>
</tr>
<tr>
<td>Metaboreceptors in respiratory pump muscles</td>
<td>Metabolic activity of respiratory pump</td>
</tr>
<tr>
<td>Vascular receptors (heart and lung)</td>
<td>Distention of vascular structures</td>
</tr>
<tr>
<td>Trigeminal skin receptors</td>
<td>Facial skin cooling</td>
</tr>
<tr>
<td>Chest wall joint and skin receptors</td>
<td>Tidal breathing motion</td>
</tr>
</tbody>
</table>

*Reviewed, for example, in References 24–26 and 39–41.
Dyspnea in Asthma and COPD

- Asthma/COPD
 - Chest tightness = bronchoconstriction
 - Respiratory effort = neuromechanical coupling (IRV/IC)
 - Can’t get a full breath in = (IRV/IC)

- Common complaints
 - Activity limitation (most common in uncontrolled asthma)
 - Exercise limitation
 - Dyspnea

Vermeulen et al. Respiratory Medicine 2016; 117: 122-130
Casaburi, Rennard. AJRCCM 2015; 191:874-876
• FEV$_1$ and PEF weakly correlated with activity limitation
• ↑ aerobic capacity without Δ spirometry
• Resting spirometry is not a good predictor of DH during exercise

Vermeulen et al. Respiratory Medicine 2016; 117: 122-130
Lougheed et al. CHEST 2006; 130:1072–1081
Table 2—Responses to Methacholine at Baseline, PC₂₀, and Maximum Response[*]

<table>
<thead>
<tr>
<th>Variables</th>
<th>Baseline</th>
<th>PC<sub>20</sub></th>
<th>Maximum Response</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borg score (overall dyspnea)</td>
<td>0.4 ± 0.06</td>
<td>2.0 ± 0.14</td>
<td>4.1 ± 0.19</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Borg score (inspiratory difficulty)</td>
<td>0.4 ± 0.06</td>
<td>2.1 ± 0.14</td>
<td>4.4 ± 0.20</td>
<td>< 0.001</td>
</tr>
<tr>
<td>FEV<sub>1</sub>, L</td>
<td>2.91 ± 0.06 (88)</td>
<td>2.19 ± 0.05 (66)</td>
<td>1.57 ± 0.05 (48)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>PEF, L/s</td>
<td>6.86 ± 0.15 (101)</td>
<td>5.15 ± 0.12 (76)</td>
<td>3.87 ± 0.11 (56)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>FEF<sub>50</sub>, L/s</td>
<td>2.78 ± 0.1 (58)</td>
<td>1.71 ± 0.06 (36)</td>
<td>1.05 ± 0.05 (22)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>FVC, L</td>
<td>4.02 ± 0.08 (95)</td>
<td>3.39 ± 0.08 (80)</td>
<td>2.69 ± 0.07 (64)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>TLC, L</td>
<td>6.01 ± 0.11 (105)</td>
<td>5.89 ± 0.12 (103)</td>
<td>6.06 ± 0.13 (106)</td>
<td>0.38</td>
</tr>
<tr>
<td>IC, L</td>
<td>2.89 ± 0.07 (107)</td>
<td>2.32 ± 0.06 (85)</td>
<td>1.90 ± 0.06 (70)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>IC/TLC, %</td>
<td>48.3 ± 0.0 (101)</td>
<td>40.6 ± 0.01 (75)</td>
<td>31.7 ± 0.01 (62)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>FRC, L</td>
<td>3.09 ± 0.07 (103)</td>
<td>3.55 ± 0.09 (118)</td>
<td>4.15 ± 0.11 (138)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>O<sub>2</sub> saturation, %</td>
<td>97.0 ± 0.2</td>
<td>97.0 ± 0.2</td>
<td>96.8 ± 0.4</td>
<td>0.66</td>
</tr>
<tr>
<td>Specific airways resistance, %</td>
<td>11.2 ± 0.8 (264)</td>
<td>27.0 ± 2.0 (649)</td>
<td>39.0 ± 2.7 (932)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

[*]Data are presented as mean ± SEM or mean ± SEM (% of predicted).

Figure 2. Descriptor clusters (n = 116) are similar but more prevalent at maximum response (Max) than at the dose nearest to PC₂₀ during methacholine-induced bronchoconstriction. *p < 0.05, **p < 0.01, ***p < 0.001 maximum response vs PC₂₀.
Dyspnea in Asthma and COPD

Vermeulen et al. Respiratory Medicine 2016; 117: 122-130
Casaburi, Rennard. AJRCCM 2015; 191:874-876
Heart or Lungs? Uncovering the Causes of Exercise Intolerance in a Patient with Chronic Cardiopulmonary Disease
Heart or Lungs? Uncovering the Causes of Exercise Intolerance in a Patient with Chronic Cardiopulmonary Disease
• MVV
 • Voluntary maneuver
 • FEV1 x 35-40
• Linearly related to dyspnea
• Blunt measure of mechanical limitations
• Cannot determine location
CPET FVLs

Time: 00:10:08
Work: 152 Watts
Event: 3
EELV: 1.78 Liters
IC: 3.94 Liters

Flow

TLC
FRC
EELV

IRV
ERV
IC
Flow limitation = \frac{V_{FL}}{V_T}
Hyperinflation and Dyspnea

Flow limitation = \(\frac{V_{FL}}{V_T} \)

Johnson et al. Chest 1999;116;488-503
CPET FVLs
CPET FVLs - DH
Table 1—Assessment of Ventilatory Constraint Based on the extFVL Relative to the MFVL

<table>
<thead>
<tr>
<th>Variables</th>
<th>No Constraint</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow limitation, % of VT</td>
<td>0</td>
<td>< 50</td>
<td>30–50</td>
<td>> 50</td>
</tr>
<tr>
<td>EILV, % of TLC</td>
<td>< 85</td>
<td>85–90</td>
<td>90–95</td>
<td>> 95</td>
</tr>
<tr>
<td>EELV, change from rest</td>
<td>< rest</td>
<td>= rest</td>
<td>≥ rest</td>
<td>> rest</td>
</tr>
<tr>
<td>Inspirator flow reserve, % capacity</td>
<td>< 75</td>
<td>75–85</td>
<td>85–95</td>
<td>> 95</td>
</tr>
<tr>
<td>$\dot{V}e/\dot{V}ecap$, %</td>
<td>< 70</td>
<td>70–85</td>
<td>85–95</td>
<td>> 95</td>
</tr>
</tbody>
</table>

Johnson et al. Chest 1999;116;488-503
CPET FVLs

- ↑ EELV not specific for DH
 - CHF, hyperventilation, obesity
 - High requirement/capacity
- IC/VE slope
 - Improved accuracy
Learning Objectives

- Understand Dynamic Hyperinflation (DH)
- Review Mechanisms of Dyspnea
- Identify DH on CPET
 - FVLs versus VE/MVV
Questions?